Perturbation theory scope for predicting vibronic selectivity by entangled two photon absorption
- URL: http://arxiv.org/abs/2412.12402v1
- Date: Mon, 16 Dec 2024 23:13:41 GMT
- Title: Perturbation theory scope for predicting vibronic selectivity by entangled two photon absorption
- Authors: C. D. Rodriguez-Camargo, H. O. Gestsson, C. Nation, A. R. Jones, A. Olaya-Castro,
- Abstract summary: We derive an approximation for the vibronic populations of a diatomic system excited by ultrabroadband frequency entangled photons.
Our results illustrate the importance of going beyond the usual approximations in second-order perturbation theory.
- Score: 0.0
- License:
- Abstract: Using second-order perturbation theory in the light-matter interaction, we derive an analytical approximation for the vibronic populations of a diatomic system excited by ultrabroadband frequency entangled photons and evaluate the population dynamics for different degrees of entanglement between photon pairs. Our analytical approach make the same predictions as previously derived via numerical solutions of the complete Schr\"odinger equation [H. Oka, Physical Review A 97, 063859 (2018)], with the added advantage of providing clear physical insights into the vibronic selectivity as a function of the degree of photon correlations while requiring significantly reduced computational effort. Specifically, our analytical expression for the probability of vibronic excitation includes a factor which predicts the enhancement of vibrational selectivity as a function of the degree correlation between the entangled photon pairs, the targeted vibrational energy level, and the vibrational molecular structure encoded in the Franck-Condon factors. Our results illustrate the importance of going beyond the usual approximations in second-order perturbation theory to capture the relevance of the vibrational structure of the molecular system of interest in order to gain a deeper understanding of the possible quantum-enhancement provided by the interaction between quantum light and matter.
Related papers
- Vibrational Entanglement through the Lens of Quantum Information Measures [0.0]
We introduce a quantum information analysis of vibrational wave functions to understand complex vibrational spectra of molecules with strong anharmonic couplings and vibrational resonances.
We present a vibrational entanglement analysis of the vibrational ground and excited states of CO2, which display strong anharmonic effects due to the symmetry-induced and accidental (near-) degeneracies.
arXiv Detail & Related papers (2024-05-03T12:06:32Z) - Photon correlation time-asymmetry and dynamical coherence in multichromophoric systems [44.99833362998488]
We show that time-asymmetries in the cross-correlations of photons corresponding to different polarizations can be exploited to probe quantum coherent transport mechanisms and steady-state coherence properties.
Our results put forward photon correlation asymmetry as a promising approach to investigate coherent contributions to excited-stated dynamics in molecular aggregates and other many-site quantum emitters.
arXiv Detail & Related papers (2024-04-24T21:06:01Z) - Two-colour photon correlations probe coherent vibronic contributions to
electronic excitation transport under incoherent illumination [41.94295877935867]
We consider a prototype light-harvesting heterodimer exhibiting coherent and collective exciton-vibration interactions.
We show that coherent vibronic mechanisms strongly affect the asymmetries characteristic of time-resolved photon cross-correlations.
We discuss how such second-order correlation asymmetry establishes important connections between coherent vibronic interactions, directional exciton population transport, and violation of quantum detailed balance.
arXiv Detail & Related papers (2024-02-29T19:00:05Z) - Wave-particle correlations in multiphoton resonances of coherent
light-matter interaction [0.0]
We discuss the conditional measurement of field amplitudes by a nonclassical photon sequence in the Jaynes-Cummings (JC) model under multiphoton operation.
arXiv Detail & Related papers (2024-02-14T16:51:54Z) - How to read out the phonon number statistics via resonance fluorescence
spectroscopy of a single-photon emitter [0.0]
phononic excitations constitute a useful interaction channel in hybrid quantum systems.
Light-scattering properties of a single-photon emitter and sidebands in resonance fluorescence spectra can be utilized for acousto-optical transduction.
It is shown that the readout is faulty in situations where relevant resonant transitions are forbidden due to vanishing Franck-Condon factors.
arXiv Detail & Related papers (2023-06-30T11:52:57Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Dynamics of Transmon Ionization [94.70553167084388]
We numerically explore the dynamics of a driven transmon-resonator system under strong and nearly resonant measurement drives.
We find clear signatures of transmon ionization where the qubit escapes out of its cosine potential.
arXiv Detail & Related papers (2022-03-21T18:00:15Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Coherence of resonant light-matter interaction in the strong-coupling
limit [0.0]
We derive analytical expressions for the spectrum and the intensity correlation function for photons scattered by the two-state atom coupled to the coherently driven cavity mode.
We increase the driving field amplitude and approach the critical point organizing a second-order dissipative quantum phase transition.
arXiv Detail & Related papers (2021-05-27T13:17:28Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.