Multi-Task Reinforcement Learning for Quadrotors
- URL: http://arxiv.org/abs/2412.12442v1
- Date: Tue, 17 Dec 2024 01:10:18 GMT
- Title: Multi-Task Reinforcement Learning for Quadrotors
- Authors: Jiaxu Xing, Ismail Geles, Yunlong Song, Elie Aljalbout, Davide Scaramuzza,
- Abstract summary: This paper presents a novel multi-task reinforcement learning (MTRL) framework tailored for quadrotor control.
By employing a multi-critic architecture and shared task encoders, our framework facilitates knowledge transfer across tasks, enabling a single policy to execute diverse maneuvers.
- Score: 18.71563817810032
- License:
- Abstract: Reinforcement learning (RL) has shown great effectiveness in quadrotor control, enabling specialized policies to develop even human-champion-level performance in single-task scenarios. However, these specialized policies often struggle with novel tasks, requiring a complete retraining of the policy from scratch. To address this limitation, this paper presents a novel multi-task reinforcement learning (MTRL) framework tailored for quadrotor control, leveraging the shared physical dynamics of the platform to enhance sample efficiency and task performance. By employing a multi-critic architecture and shared task encoders, our framework facilitates knowledge transfer across tasks, enabling a single policy to execute diverse maneuvers, including high-speed stabilization, velocity tracking, and autonomous racing. Our experimental results, validated both in simulation and real-world scenarios, demonstrate that our framework outperforms baseline approaches in terms of sample efficiency and overall task performance.
Related papers
- Transforming Vision Transformer: Towards Efficient Multi-Task Asynchronous Learning [59.001091197106085]
Multi-Task Learning (MTL) for Vision Transformer aims at enhancing the model capability by tackling multiple tasks simultaneously.
Most recent works have predominantly focused on designing Mixture-of-Experts (MoE) structures and in tegrating Low-Rank Adaptation (LoRA) to efficiently perform multi-task learning.
We propose a novel approach dubbed Efficient Multi-Task Learning (EMTAL) by transforming a pre-trained Vision Transformer into an efficient multi-task learner.
arXiv Detail & Related papers (2025-01-12T17:41:23Z) - Active Fine-Tuning of Generalist Policies [54.65568433408307]
We propose AMF (Active Multi-task Fine-tuning) to maximize multi-task policy performance under a limited demonstration budget.
We derive performance guarantees for AMF under regularity assumptions and demonstrate its empirical effectiveness in complex and high-dimensional environments.
arXiv Detail & Related papers (2024-10-07T13:26:36Z) - Efficient Multi-Task Reinforcement Learning via Task-Specific Action Correction [10.388605128396678]
Task-Specific Action Correction is designed for simultaneous learning of multiple tasks.
ACP incorporates goal-oriented sparse rewards, enabling an agent to adopt a long-term perspective.
Additional rewards transform the original problem into a multi-objective MTRL problem.
arXiv Detail & Related papers (2024-04-09T02:11:35Z) - Sample Efficient Myopic Exploration Through Multitask Reinforcement
Learning with Diverse Tasks [53.44714413181162]
This paper shows that when an agent is trained on a sufficiently diverse set of tasks, a generic policy-sharing algorithm with myopic exploration design can be sample-efficient.
To the best of our knowledge, this is the first theoretical demonstration of the "exploration benefits" of MTRL.
arXiv Detail & Related papers (2024-03-03T22:57:44Z) - Hierarchical Reinforcement Learning with Opponent Modeling for
Distributed Multi-agent Cooperation [13.670618752160594]
Deep reinforcement learning (DRL) provides a promising approach for multi-agent cooperation through the interaction of the agents and environments.
Traditional DRL solutions suffer from the high dimensions of multiple agents with continuous action space during policy search.
We propose a hierarchical reinforcement learning approach with high-level decision-making and low-level individual control for efficient policy search.
arXiv Detail & Related papers (2022-06-25T19:09:29Z) - Controllable Dynamic Multi-Task Architectures [92.74372912009127]
We propose a controllable multi-task network that dynamically adjusts its architecture and weights to match the desired task preference as well as the resource constraints.
We propose a disentangled training of two hypernetworks, by exploiting task affinity and a novel branching regularized loss, to take input preferences and accordingly predict tree-structured models with adapted weights.
arXiv Detail & Related papers (2022-03-28T17:56:40Z) - Efficient Reinforcement Learning in Resource Allocation Problems Through
Permutation Invariant Multi-task Learning [6.247939901619901]
We show that in certain settings, the available data can be dramatically increased through a form of multi-task learning.
We provide a theoretical performance bound for the gain in sample efficiency under this setting.
This motivates a new approach to multi-task learning, which involves the design of an appropriate neural network architecture and a prioritized task-sampling strategy.
arXiv Detail & Related papers (2021-02-18T14:13:02Z) - Knowledge Transfer in Multi-Task Deep Reinforcement Learning for
Continuous Control [65.00425082663146]
We present a Knowledge Transfer based Multi-task Deep Reinforcement Learning framework (KTM-DRL) for continuous control.
In KTM-DRL, the multi-task agent first leverages an offline knowledge transfer algorithm to quickly learn a control policy from the experience of task-specific teachers.
The experimental results well justify the effectiveness of KTM-DRL and its knowledge transfer and online learning algorithms, as well as its superiority over the state-of-the-art by a large margin.
arXiv Detail & Related papers (2020-10-15T03:26:47Z) - Learning Robust State Abstractions for Hidden-Parameter Block MDPs [55.31018404591743]
We leverage ideas of common structure from the HiP-MDP setting to enable robust state abstractions inspired by Block MDPs.
We derive instantiations of this new framework for both multi-task reinforcement learning (MTRL) and meta-reinforcement learning (Meta-RL) settings.
arXiv Detail & Related papers (2020-07-14T17:25:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.