Track the Answer: Extending TextVQA from Image to Video with Spatio-Temporal Clues
- URL: http://arxiv.org/abs/2412.12502v1
- Date: Tue, 17 Dec 2024 03:06:12 GMT
- Title: Track the Answer: Extending TextVQA from Image to Video with Spatio-Temporal Clues
- Authors: Yan Zhang, Gangyan Zeng, Huawen Shen, Daiqing Wu, Yu Zhou, Can Ma,
- Abstract summary: Video text-based visual question answering (Video TextVQA) is a practical task that aims to answer questions by jointly textual reasoning and visual information in a given video.<n>We propose the TEA (stands for textbfTrack thbfE bftextAlanguageer'') method that better extends the generative TextVQA framework from image to video.
- Score: 8.797350517975477
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Video text-based visual question answering (Video TextVQA) is a practical task that aims to answer questions by jointly reasoning textual and visual information in a given video. Inspired by the development of TextVQA in image domain, existing Video TextVQA approaches leverage a language model (e.g. T5) to process text-rich multiple frames and generate answers auto-regressively. Nevertheless, the spatio-temporal relationships among visual entities (including scene text and objects) will be disrupted and models are susceptible to interference from unrelated information, resulting in irrational reasoning and inaccurate answering. To tackle these challenges, we propose the TEA (stands for ``\textbf{T}rack th\textbf{E} \textbf{A}nswer'') method that better extends the generative TextVQA framework from image to video. TEA recovers the spatio-temporal relationships in a complementary way and incorporates OCR-aware clues to enhance the quality of reasoning questions. Extensive experiments on several public Video TextVQA datasets validate the effectiveness and generalization of our framework. TEA outperforms existing TextVQA methods, video-language pretraining methods and video large language models by great margins.
Related papers
- TextInVision: Text and Prompt Complexity Driven Visual Text Generation Benchmark [61.412934963260724]
Existing diffusion-based text-to-image models often struggle to accurately embed text within images.
We introduce TextInVision, a large-scale, text and prompt complexity driven benchmark to evaluate the ability of diffusion models to integrate visual text into images.
arXiv Detail & Related papers (2025-03-17T21:36:31Z) - GQE: Generalized Query Expansion for Enhanced Text-Video Retrieval [56.610806615527885]
This paper introduces a novel data-centric approach, Generalized Query Expansion (GQE), to address the inherent information imbalance between text and video.
By adaptively segmenting videos into short clips and employing zero-shot captioning, GQE enriches the training dataset with comprehensive scene descriptions.
GQE achieves state-of-the-art performance on several benchmarks, including MSR-VTT, MSVD, LSMDC, and VATEX.
arXiv Detail & Related papers (2024-08-14T01:24:09Z) - MTVQA: Benchmarking Multilingual Text-Centric Visual Question Answering [58.92057773071854]
We introduce MTVQA, the first benchmark featuring high-quality human expert annotations across 9 diverse languages.
MTVQA is the first benchmark featuring high-quality human expert annotations across 9 diverse languages.
arXiv Detail & Related papers (2024-05-20T12:35:01Z) - Enhancing textual textbook question answering with large language models and retrieval augmented generation [3.6799953119508735]
We propose a framework (PLRTQA) that incorporates the retrieval augmented generation (RAG) technique to handle the out-of-domain scenario.
Our architecture outperforms the baseline, achieving an accuracy improvement of 4. 12% in the validation set and 9. 84% in the test set for textual multiple-choice questions.
arXiv Detail & Related papers (2024-02-05T11:58:56Z) - RTQ: Rethinking Video-language Understanding Based on Image-text Model [55.278942477715084]
Video-language understanding presents unique challenges due to the inclusion of highly complex semantic details.
We propose a novel framework called RTQ, which addresses these challenges simultaneously.
Our model demonstrates outstanding performance even in the absence of video-language pre-training.
arXiv Detail & Related papers (2023-12-01T04:51:01Z) - Making the V in Text-VQA Matter [1.2962828085662563]
Text-based VQA aims at answering questions by reading the text present in the images.
Recent studies have shown that the question-answer pairs in the dataset are more focused on the text present in the image.
The models trained on this dataset predict biased answers due to the lack of understanding of visual context.
arXiv Detail & Related papers (2023-08-01T05:28:13Z) - Towards Generalisable Video Moment Retrieval: Visual-Dynamic Injection
to Image-Text Pre-Training [70.83385449872495]
The correlation between the vision and text is essential for video moment retrieval (VMR)
Existing methods rely on separate pre-training feature extractors for visual and textual understanding.
We propose a generic method, referred to as Visual-Dynamic Injection (VDI), to empower the model's understanding of video moments.
arXiv Detail & Related papers (2023-02-28T19:29:05Z) - Look, Read and Ask: Learning to Ask Questions by Reading Text in Images [3.3972119795940525]
We present a novel problem of text-based visual question generation or TextVQG.
To address TextVQG, we present an OCR consistent visual question generation model that Looks into the visual content, Reads the scene text, and Asks a relevant and meaningful natural language question.
arXiv Detail & Related papers (2022-11-23T13:52:46Z) - Text-Aware Dual Routing Network for Visual Question Answering [11.015339851906287]
Existing approaches often fail in cases that require reading and understanding text in images to answer questions.
We propose a Text-Aware Dual Routing Network (TDR) which simultaneously handles the VQA cases with and without understanding text information in the input images.
In the branch that involves text understanding, we incorporate the Optical Character Recognition (OCR) features into the model to help understand the text in the images.
arXiv Detail & Related papers (2022-11-17T02:02:11Z) - TAG: Boosting Text-VQA via Text-aware Visual Question-answer Generation [55.83319599681002]
Text-VQA aims at answering questions that require understanding the textual cues in an image.
We develop a new method to generate high-quality and diverse QA pairs by explicitly utilizing the existing rich text available in the scene context of each image.
arXiv Detail & Related papers (2022-08-03T02:18:09Z) - Structured Two-stream Attention Network for Video Question Answering [168.95603875458113]
We propose a Structured Two-stream Attention network, namely STA, to answer a free-form or open-ended natural language question.
First, we infer rich long-range temporal structures in videos using our structured segment component and encode text features.
Then, our structured two-stream attention component simultaneously localizes important visual instance, reduces the influence of background video and focuses on the relevant text.
arXiv Detail & Related papers (2022-06-02T12:25:52Z) - Look Before you Speak: Visually Contextualized Utterances [88.58909442073858]
We create a task for predicting utterances in a video using both visual frames and transcribed speech as context.
By exploiting the large number of instructional videos online, we train a model to solve this task at scale, without the need for manual annotations.
Our model achieves state-of-the-art performance on a number of downstream VideoQA benchmarks.
arXiv Detail & Related papers (2020-12-10T14:47:02Z) - RUArt: A Novel Text-Centered Solution for Text-Based Visual Question
Answering [14.498144268367541]
We propose a novel text-centered method called RUArt (Reading, Understanding and Answering the Related Text) for text-based VQA.
We evaluate our RUArt on two text-based VQA benchmarks (ST-VQA and TextVQA) and conduct extensive ablation studies for exploring the reasons behind RUArt's effectiveness.
arXiv Detail & Related papers (2020-10-24T15:37:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.