EXIT: Context-Aware Extractive Compression for Enhancing Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2412.12559v2
- Date: Wed, 18 Dec 2024 13:08:36 GMT
- Title: EXIT: Context-Aware Extractive Compression for Enhancing Retrieval-Augmented Generation
- Authors: Taeho Hwang, Sukmin Cho, Soyeong Jeong, Hoyun Song, SeungYoon Han, Jong C. Park,
- Abstract summary: Current RAG systems often struggle when retrieval models fail to rank the most relevant documents.
We introduce EXIT, an extractive context compression framework.
Our evaluations show that EXIT consistently surpasses existing compression methods.
- Score: 8.757777529568383
- License:
- Abstract: We introduce EXIT, an extractive context compression framework that enhances both the effectiveness and efficiency of retrieval-augmented generation (RAG) in question answering (QA). Current RAG systems often struggle when retrieval models fail to rank the most relevant documents, leading to the inclusion of more context at the expense of latency and accuracy. While abstractive compression methods can drastically reduce token counts, their token-by-token generation process significantly increases end-to-end latency. Conversely, existing extractive methods reduce latency but rely on independent, non-adaptive sentence selection, failing to fully utilize contextual information. EXIT addresses these limitations by classifying sentences from retrieved documents - while preserving their contextual dependencies - enabling parallelizable, context-aware extraction that adapts to query complexity and retrieval quality. Our evaluations on both single-hop and multi-hop QA tasks show that EXIT consistently surpasses existing compression methods and even uncompressed baselines in QA accuracy, while also delivering substantial reductions in inference time and token count. By improving both effectiveness and efficiency, EXIT provides a promising direction for developing scalable, high-quality QA solutions in RAG pipelines. Our code is available at https://github.com/ThisIsHwang/EXIT
Related papers
- Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
Retrieval-augmented generation (RAG) has gained traction as a powerful approach for enhancing language models by integrating external knowledge sources.
This paper proposes an alternative paradigm, cache-augmented generation (CAG) that bypasses real-time retrieval.
arXiv Detail & Related papers (2024-12-20T06:58:32Z) - BRIEF: Bridging Retrieval and Inference for Multi-hop Reasoning via Compression [91.23933111083389]
Retrieval-augmented generation (RAG) can supplement large language models (LLMs) by integrating external knowledge.
This paper presents BRIEF, a lightweight approach that performs query-aware multi-hop reasoning.
Based on our synthetic data built entirely by open-source models, BRIEF generates more concise summaries.
arXiv Detail & Related papers (2024-10-20T04:24:16Z) - COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
Iterative refinement has emerged as an effective paradigm for enhancing the capabilities of large language models (LLMs) on complex tasks.
We propose Context-Wise Order-Agnostic Language Modeling (COrAL) to overcome these challenges.
Our approach models multiple token dependencies within manageable context windows, enabling the model to perform iterative refinement internally.
arXiv Detail & Related papers (2024-10-12T23:56:19Z) - TACO-RL: Task Aware Prompt Compression Optimization with Reinforcement Learning [11.167198972934736]
Large language models (LLMs) such as GPT-4 have led to a surge in the size of prompts required for optimal performance.
We propose a novel and efficient reinforcement learning (RL) based task-aware prompt compression method.
We demonstrate that our RL-guided compression method improves the task performance by 8% - 189% over state-of-the-art compression techniques.
arXiv Detail & Related papers (2024-09-19T18:11:59Z) - QUITO-X: A New Perspective on Context Compression from the Information Bottleneck Theory [66.01597794579568]
We introduce information bottleneck theory (IB) to model the problem.
We propose a cross-attention-based approach to approximate mutual information in IB.
Our method achieves a 25% increase in compression rate compared to the state-of-the-art.
arXiv Detail & Related papers (2024-08-20T02:44:45Z) - CompAct: Compressing Retrieved Documents Actively for Question Answering [15.585833125854418]
CompAct is a novel framework that employs an active strategy to condense extensive documents without losing key information.
Our experiments demonstrate that CompAct brings significant improvements in both performance and compression rate on multi-hop question-answering benchmarks.
arXiv Detail & Related papers (2024-07-12T06:06:54Z) - Accelerating Inference of Retrieval-Augmented Generation via Sparse Context Selection [28.15184715270483]
Large language models (LLMs) augmented with retrieval exhibit robust performance and extensive versatility.
We propose a novel paradigm named Sparse RAG, which seeks to cut costs through sparsity.
Sparse RAG encodes retrieved documents in parallel, which eliminates latency introduced by long-range attention of retrieved documents.
arXiv Detail & Related papers (2024-05-25T11:10:04Z) - Learning to Filter Context for Retrieval-Augmented Generation [75.18946584853316]
Generation models are required to generate outputs given partially or entirely irrelevant passages.
FILCO identifies useful context based on lexical and information-theoretic approaches.
It trains context filtering models that can filter retrieved contexts at test time.
arXiv Detail & Related papers (2023-11-14T18:41:54Z) - Noise-Robust Dense Retrieval via Contrastive Alignment Post Training [89.29256833403167]
Contrastive Alignment POst Training (CAPOT) is a highly efficient finetuning method that improves model robustness without requiring index regeneration.
CAPOT enables robust retrieval by freezing the document encoder while the query encoder learns to align noisy queries with their unaltered root.
We evaluate CAPOT noisy variants of MSMARCO, Natural Questions, and Trivia QA passage retrieval, finding CAPOT has a similar impact as data augmentation with none of its overhead.
arXiv Detail & Related papers (2023-04-06T22:16:53Z) - Mixed-modality Representation Learning and Pre-training for Joint
Table-and-Text Retrieval in OpenQA [85.17249272519626]
An optimized OpenQA Table-Text Retriever (OTTeR) is proposed.
We conduct retrieval-centric mixed-modality synthetic pre-training.
OTTeR substantially improves the performance of table-and-text retrieval on the OTT-QA dataset.
arXiv Detail & Related papers (2022-10-11T07:04:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.