GIRAFFE: Design Choices for Extending the Context Length of Visual Language Models
- URL: http://arxiv.org/abs/2412.12735v1
- Date: Tue, 17 Dec 2024 09:57:21 GMT
- Title: GIRAFFE: Design Choices for Extending the Context Length of Visual Language Models
- Authors: Mukai Li, Lei Li, Shansan Gong, Qi Liu,
- Abstract summary: We aim to establish an effective solution that enhances long context performance of Visual Language Models.
We propose Giraffe, which is effectively extended to 128K lengths.
We will open-source the code, data, and models.
- Score: 20.976319536167512
- License:
- Abstract: Visual Language Models (VLMs) demonstrate impressive capabilities in processing multimodal inputs, yet applications such as visual agents, which require handling multiple images and high-resolution videos, demand enhanced long-range modeling. Moreover, existing open-source VLMs lack systematic exploration into extending their context length, and commercial models often provide limited details. To tackle this, we aim to establish an effective solution that enhances long context performance of VLMs while preserving their capacities in short context scenarios. Towards this goal, we make the best design choice through extensive experiment settings from data curation to context window extending and utilizing: (1) we analyze data sources and length distributions to construct ETVLM - a data recipe to balance the performance across scenarios; (2) we examine existing position extending methods, identify their limitations and propose M-RoPE++ as an enhanced approach; we also choose to solely instruction-tune the backbone with mixed-source data; (3) we discuss how to better utilize extended context windows and propose hybrid-resolution training. Built on the Qwen-VL series model, we propose Giraffe, which is effectively extended to 128K lengths. Evaluated on extensive long context VLM benchmarks such as VideoMME and Viusal Haystacks, our Giraffe achieves state-of-the-art performance among similarly sized open-source long VLMs and is competitive with commercial model GPT-4V. We will open-source the code, data, and models.
Related papers
- InternVideo2.5: Empowering Video MLLMs with Long and Rich Context Modeling [56.130911402831906]
This paper aims to improve the performance of video large language models (LM) via long and rich context (LRC) modeling.
We develop a new version of InternVideo2.5 with focus on enhancing the original MLLMs' ability to perceive fine-grained details in videos.
Experimental results demonstrate this unique designML LRC greatly improves the results of video MLLM in mainstream understanding benchmarks.
arXiv Detail & Related papers (2025-01-21T18:59:00Z) - V2PE: Improving Multimodal Long-Context Capability of Vision-Language Models with Variable Visual Position Encoding [40.784423313750075]
Vision-Language Models (VLMs) have shown promising capabilities in handling various multimodal tasks, yet they struggle in long-context scenarios.
We propose a novel positional encoding approach that employs variable increments for visual tokens, enabling more efficient management of long multimodal sequences.
We show that the fine-tuned model achieves strong performance on both standard and long-context multimodal tasks.
arXiv Detail & Related papers (2024-12-12T18:59:46Z) - Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling [128.24325909395188]
We introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0.
InternVL 2.5 exhibits competitive performance, rivaling leading commercial models such as GPT-4o and Claude-3.5-Sonnet.
We hope this model contributes to the open-source community by setting new standards for developing and applying multimodal AI systems.
arXiv Detail & Related papers (2024-12-06T18:57:08Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks.
We propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities.
We develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks.
arXiv Detail & Related papers (2024-09-17T17:59:06Z) - MLLM-LLaVA-FL: Multimodal Large Language Model Assisted Federated Learning [25.45278447786954]
We introduce a novel federated learning framework, named Multimodal Large Language Model Assisted Federated Learning (MLLM-LLaVA-FL)
Our framework is adept at harnessing the extensive, yet previously underexploited, open-source data accessible from websites and powerful server-side computational resources.
arXiv Detail & Related papers (2024-09-09T21:04:16Z) - Direct Preference Optimization of Video Large Multimodal Models from Language Model Reward [118.65089648651308]
This paper introduces a novel framework that utilizes detailed video captions as a proxy of video content.
We show that applying this tailored reward through DPO significantly improves the performance of video LMMs on video Question Answering (QA) tasks.
arXiv Detail & Related papers (2024-04-01T17:28:16Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
We propose the concept of visual tokens, which maps the visual features to probability distributions over Large Multi-modal Models' vocabulary.
We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
arXiv Detail & Related papers (2024-03-12T14:58:52Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
Vision-Language Models (VLMs) are advanced models that can tackle more intricate tasks such as image captioning and visual question answering.
Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.
We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible.
arXiv Detail & Related papers (2024-02-20T18:57:34Z) - Tuning Large Multimodal Models for Videos using Reinforcement Learning from AI Feedback [38.708690624594794]
Video and text multimodal alignment remains challenging, primarily due to the deficient volume and quality of multimodal instruction-tune data.
We present a novel alignment strategy that employs multimodal AI system to oversee itself called Reinforcement Learning from AI Feedback (RLAIF)
In specific, we propose context-aware reward modeling by providing detailed video descriptions as context during the generation of preference feedback.
arXiv Detail & Related papers (2024-02-06T06:27:40Z) - VindLU: A Recipe for Effective Video-and-Language Pretraining [83.49216853881595]
This paper conducts an empirical study demystifying the most important factors in the VidL model design.
Using these empirical insights, we then develop a step-by-step recipe, dubbed VindLU, for effective VidL pretraining.
Our model trained using our recipe achieves comparable or better than state-of-the-art results on several VidL tasks.
arXiv Detail & Related papers (2022-12-09T18:54:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.