Strong and weak symmetries and their spontaneous symmetry breaking in mixed states emerging from the quantum Ising model under multiple decoherence
- URL: http://arxiv.org/abs/2412.12738v3
- Date: Sun, 26 Jan 2025 13:32:53 GMT
- Title: Strong and weak symmetries and their spontaneous symmetry breaking in mixed states emerging from the quantum Ising model under multiple decoherence
- Authors: Takahiro Orito, Yoshihito Kuno, Ikuo Ichinose,
- Abstract summary: We study phenomena generated by interplay between two types of decoherence applied to the one-dimensional transverse field Ising model (TFIM)
We find various types of mixed states emergent from the ground states of the TFIM.
In that study, strong and weak $Z$ symmetries play an important role, for which we introduce efficient order parameters.
- Score: 0.0
- License:
- Abstract: Discovering and categorizing quantum orders in mixed many-body systems are currently one of the most important problems. Specific types of decoherence applied to typical quantum many-body states can induce a novel kind of mixed state accompanying characteristic symmetry orders, which has no counterparts in pure many-body states. We study phenomena generated by interplay between two types of decoherence applied to the one-dimensional transverse field Ising model (TFIM). We show that in the doubled Hilbert space formalism, the decoherence can be described by filtering operation applied to matrix product states (MPS) defined in the doubled Hilbert system. The filtering operation induces specific deformation of the MPS, which approximates the ground state of a certain parent Hamiltonian in the doubled Hilbert space. In the present case, such a parent Hamiltonian is the quantum Ashkin-Teller model, having a rich phase diagram with a critical lines and quantum phase transitions. By investigating the deformed MPS, we find various types of mixed states emergent from the ground states of the TFIM, and clarify phase transitions between them. In that study, strong and weak $Z_2$ symmetries play an important role, for which we introduce efficient order parameters, such as R\'{e}nyi-2 correlators, entanglement entropy, etc., in the doubled Hilbert space.
Related papers
- Decoherence-induced self-dual criticality in topological states of matter [0.9961452710097684]
We discuss the role of self-dual symmetry -- a fundamental notion in theoretical physics -- in mixed states.
We show that the decoherence of electric and magnetic vortices from the 2D bulk of the toric code can leave a (1+1)D quantum critical mixed state.
An explicit breaking of the self-duality, by incoherent noise amounting to fermion interactions or non-interacting coherent deformation, is shown to induce an RG crossover.
arXiv Detail & Related papers (2025-02-19T19:00:02Z) - Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - Observation of Higgs and Goldstone modes in U(1) symmetry-broken Rydberg atomic systems [23.439762818503013]
We report an experimental signature of Higgs and Goldstone modes in a U(1) symmetry-broken Rydberg atomic gases.
By constructing two probe fields to excite atoms, we observe the distinct phase and amplitude fluctuations of Rydberg atoms collective excitations.
arXiv Detail & Related papers (2024-10-08T13:45:59Z) - Probing Confinement Through Dynamical Quantum Phase Transitions: From
Quantum Spin Models to Lattice Gauge Theories [0.0]
We show that a change in the type of dynamical quantum phase transitions accompanies the confinement-deconfinement transition.
Our conclusions can be tested in modern quantum-simulation platforms, such as ion-trap setups and cold-atom experiments of gauge theories.
arXiv Detail & Related papers (2023-10-18T18:00:04Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Landau-Forbidden Quantum Criticality in Rydberg Quantum Simulators [0.0]
We study the ground state phase diagram of a one-dimensional array of individually trapped neutral atoms interacting strongly via Rydberg states.
We show how an enlarged, emergent continuous symmetry arises at the DQCs, which can be experimentally observed in the joint distribution of two distinct order parameters.
arXiv Detail & Related papers (2022-07-18T18:00:00Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Realising the Symmetry-Protected Haldane Phase in Fermi-Hubbard Ladders [0.0]
Topology in quantum many-body systems has profoundly changed our understanding of quantum phases of matter.
Here, we realise such a topological Haldane phase with Fermi-Hubbard ladders in an ultracold-atom quantum simulator.
arXiv Detail & Related papers (2021-03-18T17:55:56Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.