Progressive Monitoring of Generative Model Training Evolution
- URL: http://arxiv.org/abs/2412.12755v1
- Date: Tue, 17 Dec 2024 10:20:29 GMT
- Title: Progressive Monitoring of Generative Model Training Evolution
- Authors: Vidya Prasad, Anna Vilanova, Nicola Pezzotti,
- Abstract summary: Deep generative models (DGMs) have gained popularity, but their susceptibility to biases and other inefficiencies remains an issue.
We introduce a progressive analysis framework to monitor the training process of DGMs.
We demonstrate how our method supports identifying and mitigating biases early in training a Generative Adversarial Network (GAN)
- Score: 1.3108652488669736
- License:
- Abstract: While deep generative models (DGMs) have gained popularity, their susceptibility to biases and other inefficiencies that lead to undesirable outcomes remains an issue. With their growing complexity, there is a critical need for early detection of issues to achieve desired results and optimize resources. Hence, we introduce a progressive analysis framework to monitor the training process of DGMs. Our method utilizes dimensionality reduction techniques to facilitate the inspection of latent representations, the generated and real distributions, and their evolution across training iterations. This monitoring allows us to pause and fix the training method if the representations or distributions progress undesirably. This approach allows for the analysis of a models' training dynamics and the timely identification of biases and failures, minimizing computational loads. We demonstrate how our method supports identifying and mitigating biases early in training a Generative Adversarial Network (GAN) and improving the quality of the generated data distribution.
Related papers
- E2EDiff: Direct Mapping from Noise to Data for Enhanced Diffusion Models [15.270657838960114]
Diffusion models have emerged as a powerful framework for generative modeling, achieving state-of-the-art performance across various tasks.
They face several inherent limitations, including a training-sampling gap, information leakage in the progressive noising process, and the inability to incorporate advanced loss functions like perceptual and adversarial losses during training.
We propose an innovative end-to-end training framework that aligns the training and sampling processes by directly optimizing the final reconstruction output.
arXiv Detail & Related papers (2024-12-30T16:06:31Z) - Parallelly Tempered Generative Adversarial Networks [7.94957965474334]
A generative adversarial network (GAN) has been a representative backbone model in generative artificial intelligence (AI)
This work analyzes the training instability and inefficiency in the presence of mode collapse by linking it to multimodality in the target distribution.
With our newly developed GAN objective function, the generator can learn all the tempered distributions simultaneously.
arXiv Detail & Related papers (2024-11-18T18:01:13Z) - Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think [72.48325960659822]
One main bottleneck in training large-scale diffusion models for generation lies in effectively learning these representations.
We study this by introducing a straightforward regularization called REPresentation Alignment (REPA), which aligns the projections of noisy input hidden states in denoising networks with clean image representations obtained from external, pretrained visual encoders.
The results are striking: our simple strategy yields significant improvements in both training efficiency and generation quality when applied to popular diffusion and flow-based transformers, such as DiTs and SiTs.
arXiv Detail & Related papers (2024-10-09T14:34:53Z) - MCGAN: Enhancing GAN Training with Regression-Based Generator Loss [5.7645234295847345]
Generative adversarial networks (GANs) have emerged as a powerful tool for generating high-fidelity data.
Main bottleneck of existing approaches is the lack of supervision on the generator training.
We propose an algorithm called Monte Carlo GAN (MCGAN)
arXiv Detail & Related papers (2024-05-27T14:15:52Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Demonstrating the Evolution of GANs through t-SNE [0.4588028371034407]
Evolutionary algorithms, such as COEGAN, were recently proposed as a solution to improve the GAN training.
In this work, we propose an evaluation method based on t-distributed Neighbour Embedding (t-SNE) to assess the progress of GANs.
A metric based on the resulting t-SNE maps and the Jaccard index is proposed to represent the model quality.
arXiv Detail & Related papers (2021-01-31T20:07:08Z) - Generative Data Augmentation for Commonsense Reasoning [75.26876609249197]
G-DAUGC is a novel generative data augmentation method that aims to achieve more accurate and robust learning in the low-resource setting.
G-DAUGC consistently outperforms existing data augmentation methods based on back-translation.
Our analysis demonstrates that G-DAUGC produces a diverse set of fluent training examples, and that its selection and training approaches are important for performance.
arXiv Detail & Related papers (2020-04-24T06:12:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.