CoMPaSS: Enhancing Spatial Understanding in Text-to-Image Diffusion Models
- URL: http://arxiv.org/abs/2412.13195v1
- Date: Tue, 17 Dec 2024 18:59:50 GMT
- Title: CoMPaSS: Enhancing Spatial Understanding in Text-to-Image Diffusion Models
- Authors: Gaoyang Zhang, Bingtao Fu, Qingnan Fan, Qi Zhang, Runxing Liu, Hong Gu, Huaqi Zhang, Xinguo Liu,
- Abstract summary: CoMPaSS is a versatile training framework that enhances spatial understanding of any T2I diffusion model.
CoMPaSS solves the ambiguity of spatial-related data with the Spatial Constraints-Oriented Pairing (SCOP) data engine.
To better exploit the curated high-quality spatial priors, CoMPaSS introduces a Token ENcoding ORdering (TENOR) module.
- Score: 13.992486106252716
- License:
- Abstract: Text-to-image diffusion models excel at generating photorealistic images, but commonly struggle to render accurate spatial relationships described in text prompts. We identify two core issues underlying this common failure: 1) the ambiguous nature of spatial-related data in existing datasets, and 2) the inability of current text encoders to accurately interpret the spatial semantics of input descriptions. We address these issues with CoMPaSS, a versatile training framework that enhances spatial understanding of any T2I diffusion model. CoMPaSS solves the ambiguity of spatial-related data with the Spatial Constraints-Oriented Pairing (SCOP) data engine, which curates spatially-accurate training data through a set of principled spatial constraints. To better exploit the curated high-quality spatial priors, CoMPaSS further introduces a Token ENcoding ORdering (TENOR) module to allow better exploitation of high-quality spatial priors, effectively compensating for the shortcoming of text encoders. Extensive experiments on four popular open-weight T2I diffusion models covering both UNet- and MMDiT-based architectures demonstrate the effectiveness of CoMPaSS by setting new state-of-the-arts with substantial relative gains across well-known benchmarks on spatial relationships generation, including VISOR (+98%), T2I-CompBench Spatial (+67%), and GenEval Position (+131%). Code will be available at https://github.com/blurgyy/CoMPaSS.
Related papers
- Parallel Sequence Modeling via Generalized Spatial Propagation Network [80.66202109995726]
Generalized Spatial Propagation Network (GSPN) is a new attention mechanism for optimized vision tasks that inherently captures 2D spatial structures.
GSPN overcomes limitations by directly operating on spatially coherent image data and forming dense pairwise connections through a line-scan approach.
GSPN achieves superior spatial fidelity and state-of-the-art performance in vision tasks, including ImageNet classification, class-guided image generation, and text-to-image generation.
arXiv Detail & Related papers (2025-01-21T18:56:19Z) - HSLiNets: Hyperspectral Image and LiDAR Data Fusion Using Efficient Dual Non-Linear Feature Learning Networks [7.06787067270941]
The integration of hyperspectral imaging (HSI) and LiDAR data within new linear feature spaces offers a promising solution to the challenges posed by the high-dimensionality and redundancy inherent in HSIs.
This study introduces a dual linear fused space framework that capitalizes on bidirectional reversed convolutional neural network (CNN) pathways, coupled with a specialized spatial analysis block.
The proposed method not only enhances data processing and classification accuracy, but also mitigates the computational burden typically associated with advanced models such as Transformers.
arXiv Detail & Related papers (2024-11-30T01:08:08Z) - Getting it Right: Improving Spatial Consistency in Text-to-Image Models [103.52640413616436]
One of the key shortcomings in current text-to-image (T2I) models is their inability to consistently generate images which faithfully follow the spatial relationships specified in the text prompt.
We create SPRIGHT, the first spatially focused, large-scale dataset, by re-captioning 6 million images from 4 widely used vision datasets.
We find that training on images containing a larger number of objects leads to substantial improvements in spatial consistency, including state-of-the-art results on T2I-CompBench with a spatial score of 0.2133, by fine-tuning on 500 images.
arXiv Detail & Related papers (2024-04-01T15:55:25Z) - SSMG: Spatial-Semantic Map Guided Diffusion Model for Free-form
Layout-to-Image Generation [68.42476385214785]
We propose a novel Spatial-Semantic Map Guided (SSMG) diffusion model that adopts the feature map, derived from the layout, as guidance.
SSMG achieves superior generation quality with sufficient spatial and semantic controllability compared to previous works.
We also propose the Relation-Sensitive Attention (RSA) and Location-Sensitive Attention (LSA) mechanisms.
arXiv Detail & Related papers (2023-08-20T04:09:12Z) - Benchmarking Spatial Relationships in Text-to-Image Generation [102.62422723894232]
We investigate the ability of text-to-image models to generate correct spatial relationships among objects.
We present VISOR, an evaluation metric that captures how accurately the spatial relationship described in text is generated in the image.
Our experiments reveal a surprising finding that, although state-of-the-art T2I models exhibit high image quality, they are severely limited in their ability to generate multiple objects or the specified spatial relations between them.
arXiv Detail & Related papers (2022-12-20T06:03:51Z) - Maximum Spatial Perturbation Consistency for Unpaired Image-to-Image
Translation [56.44946660061753]
This paper proposes a universal regularization technique called maximum spatial perturbation consistency (MSPC)
MSPC enforces a spatial perturbation function (T ) and the translation operator (G) to be commutative (i.e., TG = GT )
Our method outperforms the state-of-the-art methods on most I2I benchmarks.
arXiv Detail & Related papers (2022-03-23T19:59:04Z) - IGAN: Inferent and Generative Adversarial Networks [0.0]
IGAN learns both a generative and an inference model on a complex high dimensional data distribution.
It extends the traditional GAN framework with inference by rewriting the adversarial strategy in both the image and the latent space.
arXiv Detail & Related papers (2021-09-27T21:48:35Z) - Low Light Image Enhancement via Global and Local Context Modeling [164.85287246243956]
We introduce a context-aware deep network for low-light image enhancement.
First, it features a global context module that models spatial correlations to find complementary cues over full spatial domain.
Second, it introduces a dense residual block that captures local context with a relatively large receptive field.
arXiv Detail & Related papers (2021-01-04T09:40:54Z) - Causal Contextual Prediction for Learned Image Compression [36.08393281509613]
We propose the concept of separate entropy coding to leverage a serial decoding process for causal contextual entropy prediction in the latent space.
A causal context model is proposed that separates the latents across channels and makes use of cross-channel relationships to generate highly informative contexts.
We also propose a causal global prediction model, which is able to find global reference points for accurate predictions of unknown points.
arXiv Detail & Related papers (2020-11-19T08:15:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.