An introduction to reservoir computing
- URL: http://arxiv.org/abs/2412.13212v1
- Date: Thu, 12 Dec 2024 21:19:52 GMT
- Title: An introduction to reservoir computing
- Authors: Michael te Vrugt,
- Abstract summary: Reservoir computing employs high-dimensional recurrent networks and trains only the final layer.<n>I present some important physical implementations coming from electronics, photonics, spintronics, mechanics, and biology.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a growing interest in the development of artificial neural networks that are implemented in a physical system. A major challenge in this context is that these networks are difficult to train since training here would require a change of physical parameters rather than simply of coefficients in a computer program. For this reason, reservoir computing, where one employs high-dimensional recurrent networks and trains only the final layer, is widely used in this context. In this chapter, I introduce the basic concepts of reservoir computing. Moreover, I present some important physical implementations coming from electronics, photonics, spintronics, mechanics, and biology. Finally, I provide a brief discussion of quantum reservoir computing.
Related papers
- A Survey on Brain-Inspired Deep Learning via Predictive Coding [85.93245078403875]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Quantum computation: Efficient network partitioning for large scale
critical infrastructures [1.454681691352036]
We focus on network partitioning as a means for analyzing risk in critical infrastructures.
It is based on the potential speedup quantum computers can provide in the identification of eigenvalues and eigenvectors of sparse graph Laplacians.
arXiv Detail & Related papers (2023-02-04T03:09:25Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
We show that useful information can be extracted from the quantum-mechanical implementation of Harrow-Hassidim-Lloyd (HHL)
This paper shows, however, that useful information can be extracted from the quantum-mechanical implementation of HHL, and used to reduce the complexity of finding the solution on the classical side.
arXiv Detail & Related papers (2022-10-23T11:58:05Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Limitations of Deep Learning for Inverse Problems on Digital Hardware [65.26723285209853]
We analyze what actually can be computed on current hardware platforms modeled as Turing machines.
We prove that finite-dimensional inverse problems are not Banach-Mazur computable for small relaxation parameters.
arXiv Detail & Related papers (2022-02-28T00:20:12Z) - Physics-informed ConvNet: Learning Physical Field from a Shallow Neural
Network [0.180476943513092]
Modelling and forecasting multi-physical systems remain a challenge due to unavoidable data scarcity and noise.
New framework named physics-informed convolutional network (PICN) is recommended from a CNN perspective.
PICN may become an alternative neural network solver in physics-informed machine learning.
arXiv Detail & Related papers (2022-01-26T14:35:58Z) - Reservoir Stack Machines [77.12475691708838]
Memory-augmented neural networks equip a recurrent neural network with an explicit memory to support tasks that require information storage.
We introduce the reservoir stack machine, a model which can provably recognize all deterministic context-free languages.
Our results show that the reservoir stack machine achieves zero error, even on test sequences longer than the training data.
arXiv Detail & Related papers (2021-05-04T16:50:40Z) - A deep learning theory for neural networks grounded in physics [2.132096006921048]
We argue that building large, fast and efficient neural networks on neuromorphic architectures requires rethinking the algorithms to implement and train them.
Our framework applies to a very broad class of models, namely systems whose state or dynamics are described by variational equations.
arXiv Detail & Related papers (2021-03-18T02:12:48Z) - Reservoir Computing with Magnetic Thin Films [35.32223849309764]
New unconventional computing hardware has emerged with the potential to exploit natural phenomena and gain efficiency.
Physical reservoir computing demonstrates this with a variety of unconventional systems.
We perform an initial exploration of three magnetic materials in thin-film geometries via microscale simulation.
arXiv Detail & Related papers (2021-01-29T17:37:17Z) - ItNet: iterative neural networks with small graphs for accurate and
efficient anytime prediction [1.52292571922932]
In this study, we introduce a class of network models that have a small memory footprint in terms of their computational graphs.
We show state-of-the-art results for semantic segmentation on the CamVid and Cityscapes datasets.
arXiv Detail & Related papers (2021-01-21T15:56:29Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z) - Physical reservoir computing -- An introductory perspective [0.0]
Physical reservoir computing allows one to exploit the complex dynamics of physical systems as information-processing devices.
This paper aims to illustrate the potentials of the framework using examples from soft robotics.
arXiv Detail & Related papers (2020-05-03T05:39:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.