Lyapunov Analysis For Monotonically Forward-Backward Accelerated Algorithms
- URL: http://arxiv.org/abs/2412.13527v1
- Date: Wed, 18 Dec 2024 06:09:00 GMT
- Title: Lyapunov Analysis For Monotonically Forward-Backward Accelerated Algorithms
- Authors: Mingwei Fu, Bin Shi,
- Abstract summary: Nesterov's accelerated gradient method (NAG) is a landmark advancement in gradient-based optimization.
For strongly convex functions, whether NAG converges linearly remains an open question.
We propose a modification to the iterative relation by introducing a gradient term, leading to a new gradient-based iterative relation.
- Score: 4.404496835736175
- License:
- Abstract: In the realm of gradient-based optimization, Nesterov's accelerated gradient method (NAG) is a landmark advancement, achieving an accelerated convergence rate that outperforms the vanilla gradient descent method for convex function. However, for strongly convex functions, whether NAG converges linearly remains an open question, as noted in the comprehensive review by Chambolle and Pock [2016]. This issue, aside from the critical step size, was addressed by Li et al. [2024a] using a high-resolution differential equation framework. Furthermore, Beck [2017, Section 10.7.4] introduced a monotonically convergent variant of NAG, referred to as M-NAG. Despite these developments, the Lyapunov analysis presented in [Li et al., 2024a] cannot be directly extended to M-NAG. In this paper, we propose a modification to the iterative relation by introducing a gradient term, leading to a new gradient-based iterative relation. This adjustment allows for the construction of a novel Lyapunov function that excludes kinetic energy. The linear convergence derived from this Lyapunov function is independent of both the parameters of the strongly convex functions and the step size, yielding a more general and robust result. Notably, we observe that the gradient iterative relation derived from M-NAG is equivalent to that from NAG when the position-velocity relation is applied. However, the Lyapunov analysis does not rely on the position-velocity relation, allowing us to extend the linear convergence to M-NAG. Finally, by utilizing two proximal inequalities, which serve as the proximal counterparts of strongly convex inequalities, we extend the linear convergence to both the fast iterative shrinkage-thresholding algorithm (FISTA) and its monotonic counterpart (M-FISTA).
Related papers
- Directional Smoothness and Gradient Methods: Convergence and Adaptivity [16.779513676120096]
We develop new sub-optimality bounds for gradient descent that depend on the conditioning of the objective along the path of optimization.
Key to our proofs is directional smoothness, a measure of gradient variation that we use to develop upper-bounds on the objective.
We prove that the Polyak step-size and normalized GD obtain fast, path-dependent rates despite using no knowledge of the directional smoothness.
arXiv Detail & Related papers (2024-03-06T22:24:05Z) - Convergence Analysis of Fractional Gradient Descent [0.0]
For optimization, it is of interest to understand the convergence of properties using fractional derivatives.
This paper analyzes the potential up fractional gradient descent.
empirical results will be presented.
arXiv Detail & Related papers (2023-11-30T10:24:07Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Linear convergence of forward-backward accelerated algorithms without knowledge of the modulus of strong convexity [14.0409219811182]
We show that both Nesterov's accelerated gradient descent (NAG) and FISTA exhibit linear convergence for strongly convex functions.
We emphasize the distinctive approach employed in crafting the Lyapunov function, which involves a dynamically adapting coefficient of kinetic energy.
arXiv Detail & Related papers (2023-06-16T08:58:40Z) - Convergence of mean-field Langevin dynamics: Time and space
discretization, stochastic gradient, and variance reduction [49.66486092259376]
The mean-field Langevin dynamics (MFLD) is a nonlinear generalization of the Langevin dynamics that incorporates a distribution-dependent drift.
Recent works have shown that MFLD globally minimizes an entropy-regularized convex functional in the space of measures.
We provide a framework to prove a uniform-in-time propagation of chaos for MFLD that takes into account the errors due to finite-particle approximation, time-discretization, and gradient approximation.
arXiv Detail & Related papers (2023-06-12T16:28:11Z) - Convex and Non-convex Optimization Under Generalized Smoothness [69.69521650503431]
An analysis of convex and non- optimization methods often requires the Lipsitzness gradient, which limits the analysis by this trajectorys.
Recent work generalizes the gradient setting via the non-uniform smoothness condition.
arXiv Detail & Related papers (2023-06-02T04:21:59Z) - Revisiting the acceleration phenomenon via high-resolution differential
equations [6.53306151979817]
Nesterov's accelerated gradient descent (NAG) is one of the milestones in the history of first-order algorithms.
We investigate NAG for the $mu$-strongly convex function based on the techniques of Lyapunov analysis and phase-space representation.
We find that the high-resolution differential equation framework from the implicit-velocity scheme of NAG is perfect and outperforms the gradient-correction scheme.
arXiv Detail & Related papers (2022-12-12T04:36:37Z) - Proximal Subgradient Norm Minimization of ISTA and FISTA [8.261388753972234]
We show that the squared proximal subgradient norm for the class of iterative shrinkage-thresholding algorithms converges at an inverse square rate.
We also show that the squared proximal subgradient norm for the class of faster iterative shrinkage-thresholding algorithms (FISTA) is accelerated to convergence at an inverse cubic rate.
arXiv Detail & Related papers (2022-11-03T06:50:19Z) - Convex Analysis of the Mean Field Langevin Dynamics [49.66486092259375]
convergence rate analysis of the mean field Langevin dynamics is presented.
$p_q$ associated with the dynamics allows us to develop a convergence theory parallel to classical results in convex optimization.
arXiv Detail & Related papers (2022-01-25T17:13:56Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
We present an analysis of the ExtraGradient (SEG) method with constant step size, and present variations of the method that yield favorable convergence.
We prove that when augmented with averaging, SEG provably converges to the Nash equilibrium, and such a rate is provably accelerated by incorporating a scheduled restarting procedure.
arXiv Detail & Related papers (2021-06-30T17:51:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.