Singular transport in non-equilibrium strongly internal-coupled 1D tilted field spin-1/2 chain
- URL: http://arxiv.org/abs/2412.13814v2
- Date: Sat, 18 Jan 2025 12:25:58 GMT
- Title: Singular transport in non-equilibrium strongly internal-coupled 1D tilted field spin-1/2 chain
- Authors: Yi-jia Yang, Yu-qiang Liu, Zheng Liu, Chang-shui Yu,
- Abstract summary: This work studies a one-dimensional non-equilibrium Ising chain immersed in a tilted magnetic field.
Every spin contacts a Boson reservoir with the dissipative system-environment interaction.
- Score: 3.1592042828921505
- License:
- Abstract: Non-equilibrium spin-chain systems have been attracting increasing interest in energy transport. This work studies a one-dimensional non-equilibrium Ising chain immersed in a tilted magnetic field, every spin contacts a Boson reservoir with the dissipative system-environment interaction. We analytically investigate the dynamics and the steady-state energy transport taking advantage of the Born-Markov-secular master equation. In the longitudinal field, one can find that the non dissipative $N^\prime$ spins decompose the spin chain into $N^\prime +1$ independent subchains and block the heat currents from the hot end to the cool end. Moreover, for the non-dissipative $\mu$th spin, its nearest two bulk spins become the nodal spins in the subchains and have the corresponding energy correction of $\pm J_{\mu-1,\mu}$ and $\pm J_{\mu,\mu+1}$ depending on the excited/ground state of the $\mu$th spin. Therefore, a magnetically controlled heat modulator can be designed by adjusting the direction of the magnetic field in which the non-dissipative spin is located. For the transverse field case, the whole Hilbert space of the chain can always be divided into two independent subspaces regardless of whether the bulk spin is dissipative. This work provides new insight into the dynamics and energy transport of the dissipative Ising model.
Related papers
- Exploiting the presence of chiral spin states in molecular nanomagnets [47.41699406259656]
In a three-spin-center system, antiferromagnetic exchange interactions give rise to two ground-state doublets.
We explore the presence of spin-chirality in Lanthanide complexes that feature two magnetic centers.
arXiv Detail & Related papers (2025-01-21T08:23:12Z) - Quantum Phonon Dynamics Induced Spontaneous Spin-Orbit Coupling [9.748987642024122]
A spin-dependent electron-phonon coupling model is investigated on a half-filled square lattice.
Spin-orbit coupling emerges as an order in the ground state for any $lambda$ in the adiabatic limit.
Our work opens up the possibility of hidden spin-orbit coupling in materials where it is otherwise forbidden by lattice symmetry.
arXiv Detail & Related papers (2024-10-22T12:19:52Z) - Waveguide quantum electrodynamics at the onset of spin-spin correlations [36.136619420474766]
We find that molecules belonging to one of the two crystal sublattices form one-dimensional spin chains.
The microwave transmission shows evidences for the collective coupling of quasi-identical spins to the propagating photons.
arXiv Detail & Related papers (2024-04-04T18:00:05Z) - Quantum spin chains with bond dissipation [0.26107298043931204]
We study the effect of bond dissipation on the one-dimensional antiferromagnetic spin-$1/2$ Heisenberg model.
Our results suggest that the critical properties of the dissipative system are the same as for the spin-Peierls model.
arXiv Detail & Related papers (2023-10-17T18:46:27Z) - Dynamics of magnetization at infinite temperature in a Heisenberg spin chain [105.07522062418397]
In a chain of 46 superconducting qubits, we study the probability distribution, $P(mathcalM)$, of the magnetization transferred across the chain's center.
The first two moments of $P(mathcalM)$ show superdiffusive behavior, a hallmark of KPZ.
The third and fourth moments rule out the KPZ conjecture and allow for evaluating other theories.
arXiv Detail & Related papers (2023-06-15T17:58:48Z) - Understanding the propagation of excitations in quantum spin chains with
different kind of interactions [68.8204255655161]
It is shown that the inhomogeneous chains are able to transfer excitations with near perfect fidelity.
It is shown that both designed chains have in common a partially ordered spectrum and well localized eigenvectors.
arXiv Detail & Related papers (2021-12-31T15:09:48Z) - Strong-coupling emergence of dark states in XX central spin models [77.34726150561087]
It was recently shown that the XX central spin model is integrable in the presence of a magnetic field to the plane in which the coupling exists.
We show that, provided the coupling is strong enough, dark states can actually be found even in the presence of an in-plane magnetic field.
arXiv Detail & Related papers (2021-12-17T15:12:02Z) - Simulating non-Hermitian dynamics of a multi-spin quantum system and an
emergent central spin model [0.0]
It is possible to simulate the dynamics of a single spin-$1/2$ ($mathsfPT$ symmetric) system by embedding it into a subspace of a larger Hilbert space with unitary dynamics.
We visualize it as a strongly correlated central spin model with the additional spin-$1/2$ playing the role of central spin.
arXiv Detail & Related papers (2020-12-24T19:00:11Z) - Giant spin current rectification due to the interplay of negative
differential conductance and a non-uniform magnetic field [0.0]
In XXZ chains, spin transport can be significantly suppressed when the interactions in the chain and the bias of the dissipative driving are large enough.
Here we show that this many-body effect, combined with a non-uniform magnetic field, can allow a high degree of control of the spin current.
arXiv Detail & Related papers (2020-01-31T03:46:53Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.