Cognition Chain for Explainable Psychological Stress Detection on Social Media
- URL: http://arxiv.org/abs/2412.14009v1
- Date: Wed, 18 Dec 2024 16:26:47 GMT
- Title: Cognition Chain for Explainable Psychological Stress Detection on Social Media
- Authors: Xin Wang, Boyan Gao, Yi Dai, Lei Cao, Liang Zhao, Yibo Yang, David Clifton,
- Abstract summary: Stress is a pervasive global health issue that can lead to severe mental health problems.<n>Current early detection models perform "black box" inference suffering from limited explainability and trust.<n>We develop CogLLM, an explainable stress detection model.
- Score: 29.25424712182019
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stress is a pervasive global health issue that can lead to severe mental health problems. Early detection offers timely intervention and prevention of stress-related disorders. The current early detection models perform "black box" inference suffering from limited explainability and trust which blocks the real-world clinical application. Thanks to the generative properties introduced by the Large Language Models (LLMs), the decision and the prediction from such models are semi-interpretable through the corresponding description. However, the existing LLMs are mostly trained for general purposes without the guidance of psychological cognitive theory. To this end, we first highlight the importance of prior theory with the observation of performance boosted by the chain-of-thoughts tailored for stress detection. This method termed Cognition Chain explicates the generation of stress through a step-by-step cognitive perspective based on cognitive appraisal theory with a progress pipeline: Stimulus $\rightarrow$ Evaluation $\rightarrow$ Reaction $\rightarrow$ Stress State, guiding LLMs to provide comprehensive reasoning explanations. We further study the benefits brought by the proposed Cognition Chain format by utilising it as a synthetic dataset generation template for LLMs instruction-tuning and introduce CogInstruct, an instruction-tuning dataset for stress detection. This dataset is developed using a three-stage self-reflective annotation pipeline that enables LLMs to autonomously generate and refine instructional data. By instruction-tuning Llama3 with CogInstruct, we develop CogLLM, an explainable stress detection model. Evaluations demonstrate that CogLLM achieves outstanding performance while enhancing explainability. Our work contributes a novel approach by integrating cognitive theories into LLM reasoning processes, offering a promising direction for future explainable AI research.
Related papers
- AGIR: Assessing 3D Gait Impairment with Reasoning based on LLMs [0.0]
gait impairment plays an important role in early diagnosis, disease monitoring, and treatment evaluation for neurodegenerative diseases.
Recent deep learning-based approaches have consistently improved classification accuracies, but they often lack interpretability.
We introduce AGIR, a novel pipeline consisting of a pre-trained VQ-VAE motion tokenizer and a Large Language Model (LLM) fine-tuned over pairs of motion tokens.
arXiv Detail & Related papers (2025-03-23T17:12:16Z) - From Perceptions to Decisions: Wildfire Evacuation Decision Prediction with Behavioral Theory-informed LLMs [4.050331942535618]
FLARE is a framework for advanced reasoning on wildfire evacuation decision prediction.
It integrates behavioral theories and models to streamline the Chain-of-Thought (CoT) reasoning.
Experiments show an average of 20.47% performance improvement over traditional theory-informed behavioral models.
arXiv Detail & Related papers (2025-02-24T22:47:33Z) - Hypothesis-Driven Theory-of-Mind Reasoning for Large Language Models [76.6028674686018]
We introduce thought-tracing, an inference-time reasoning algorithm to trace the mental states of agents.
Our algorithm is modeled after the Bayesian theory-of-mind framework.
We evaluate thought-tracing on diverse theory-of-mind benchmarks, demonstrating significant performance improvements.
arXiv Detail & Related papers (2025-02-17T15:08:50Z) - OCEAN: Offline Chain-of-thought Evaluation and Alignment in Large Language Models [68.17018458283651]
This work focuses on the offline evaluation of the chain-of-thought capabilities of LLMs.
We use knowledge graphs (e.g., Wikidata5m) to provide feedback on the generated chain of thoughts.
We show how to optimize LLMs based on the proposed evaluation method.
arXiv Detail & Related papers (2024-10-31T07:48:44Z) - Interpretable Video based Stress Detection with Self-Refine Chain-of-thought Reasoning [4.541582055558865]
We propose a novel interpretable approach for video-based stress detection.
Our method focuses on extracting subtle behavioral and physiological cues from video sequences that indicate stress levels.
We evaluate our approach on several public and private datasets, demonstrating its superior performance in comparison to traditional video-based stress detection methods.
arXiv Detail & Related papers (2024-10-12T09:06:09Z) - Metacognitive Myopia in Large Language Models [0.0]
Large Language Models (LLMs) exhibit potentially harmful biases that reinforce culturally inherent stereotypes, cloud moral judgments, or amplify positive evaluations of majority groups.
We propose metacognitive myopia as a cognitive-ecological framework that can account for a conglomerate of established and emerging LLM biases.
Our theoretical framework posits that a lack of the two components of metacognition, monitoring and control, causes five symptoms of metacognitive myopia in LLMs.
arXiv Detail & Related papers (2024-08-10T14:43:57Z) - How Likely Do LLMs with CoT Mimic Human Reasoning? [31.86489714330338]
Chain-of-thought emerges as a promising technique for eliciting reasoning capabilities from Large Language Models (LLMs)<n>We use causal analysis to understand the relationships between the problem instruction, reasoning, and the answer in LLMs.
arXiv Detail & Related papers (2024-02-25T10:13:04Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Understanding, Predicting and Better Resolving Q-Value Divergence in
Offline-RL [86.0987896274354]
We first identify a fundamental pattern, self-excitation, as the primary cause of Q-value estimation divergence in offline RL.
We then propose a novel Self-Excite Eigenvalue Measure (SEEM) metric to measure the evolving property of Q-network at training.
For the first time, our theory can reliably decide whether the training will diverge at an early stage.
arXiv Detail & Related papers (2023-10-06T17:57:44Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
We propose to expose captured knowledge in the form of a directed acyclic causal graph.
We also design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs.
The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner.
arXiv Detail & Related papers (2023-09-30T20:59:42Z) - Understanding Self-Supervised Learning of Speech Representation via
Invariance and Redundancy Reduction [0.45060992929802207]
Self-supervised learning (SSL) has emerged as a promising paradigm for learning flexible speech representations from unlabeled data.
This study provides an empirical analysis of Barlow Twins (BT), an SSL technique inspired by theories of redundancy reduction in human perception.
arXiv Detail & Related papers (2023-09-07T10:23:59Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
We propose an explainable geometric deep network dubbed NeuroExplainer.
NeuroExplainer is used to uncover altered infant cortical development patterns associated with preterm birth.
arXiv Detail & Related papers (2023-01-01T12:48:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.