Autoregressive Video Generation without Vector Quantization
- URL: http://arxiv.org/abs/2412.14169v1
- Date: Wed, 18 Dec 2024 18:59:53 GMT
- Title: Autoregressive Video Generation without Vector Quantization
- Authors: Haoge Deng, Ting Pan, Haiwen Diao, Zhengxiong Luo, Yufeng Cui, Huchuan Lu, Shiguang Shan, Yonggang Qi, Xinlong Wang,
- Abstract summary: We reformulate the video generation problem as a non-quantized autoregressive modeling of temporal frame-by-frame prediction.
With the proposed approach, we train a novel video autoregressive model without vector quantization, termed NOVA.
Our results demonstrate that NOVA surpasses prior autoregressive video models in data efficiency, inference speed, visual fidelity, and video fluency, even with a much smaller model capacity.
- Score: 90.87907377618747
- License:
- Abstract: This paper presents a novel approach that enables autoregressive video generation with high efficiency. We propose to reformulate the video generation problem as a non-quantized autoregressive modeling of temporal frame-by-frame prediction and spatial set-by-set prediction. Unlike raster-scan prediction in prior autoregressive models or joint distribution modeling of fixed-length tokens in diffusion models, our approach maintains the causal property of GPT-style models for flexible in-context capabilities, while leveraging bidirectional modeling within individual frames for efficiency. With the proposed approach, we train a novel video autoregressive model without vector quantization, termed NOVA. Our results demonstrate that NOVA surpasses prior autoregressive video models in data efficiency, inference speed, visual fidelity, and video fluency, even with a much smaller model capacity, i.e., 0.6B parameters. NOVA also outperforms state-of-the-art image diffusion models in text-to-image generation tasks, with a significantly lower training cost. Additionally, NOVA generalizes well across extended video durations and enables diverse zero-shot applications in one unified model. Code and models are publicly available at https://github.com/baaivision/NOVA.
Related papers
- ACDiT: Interpolating Autoregressive Conditional Modeling and Diffusion Transformer [95.80384464922147]
Continuous visual generation requires the full-sequence diffusion-based approach.
We present ACDiT, an Autoregressive blockwise Conditional Diffusion Transformer.
We demonstrate that ACDiT can be seamlessly used in visual understanding tasks despite being trained on the diffusion objective.
arXiv Detail & Related papers (2024-12-10T18:13:20Z) - Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
Energy-based Diffusion Language Model (EDLM) is an energy-based model operating at the full sequence level for each diffusion step.
Our framework offers a 1.3$times$ sampling speedup over existing diffusion models.
arXiv Detail & Related papers (2024-10-28T17:25:56Z) - Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective [52.778766190479374]
Latent-based image generative models have achieved notable success in image generation tasks.
Despite sharing the same latent space, autoregressive models significantly lag behind LDMs and MIMs in image generation.
We propose a simple but effective discrete image tokenizer to stabilize the latent space for image generative modeling.
arXiv Detail & Related papers (2024-10-16T12:13:17Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - Video Prediction by Efficient Transformers [14.685237010856953]
We present a new family of Transformer-based models for video prediction.
Experiments show that the proposed video prediction models are competitive with more complex state-of-the-art convolutional-LSTM based models.
arXiv Detail & Related papers (2022-12-12T16:46:48Z) - Efficient Video Prediction via Sparsely Conditioned Flow Matching [24.32740918613266]
We introduce a novel generative model for video prediction based on latent flow matching.
We call our model Random frame conditioned flow Integration for VidEo pRediction, or, in short, RIVER.
arXiv Detail & Related papers (2022-11-26T14:18:50Z) - HARP: Autoregressive Latent Video Prediction with High-Fidelity Image
Generator [90.74663948713615]
We train an autoregressive latent video prediction model capable of predicting high-fidelity future frames.
We produce high-resolution (256x256) videos with minimal modification to existing models.
arXiv Detail & Related papers (2022-09-15T08:41:57Z) - Global Context with Discrete Diffusion in Vector Quantised Modelling for
Image Generation [19.156223720614186]
The integration of Vector Quantised Variational AutoEncoder with autoregressive models as generation part has yielded high-quality results on image generation.
We show that with the help of a content-rich discrete visual codebook from VQ-VAE, the discrete diffusion model can also generate high fidelity images with global context.
arXiv Detail & Related papers (2021-12-03T09:09:34Z) - Insights from Generative Modeling for Neural Video Compression [31.59496634465347]
We present newly proposed neural video coding algorithms through the lens of deep autoregressive and latent variable modeling.
We propose several architectures that yield state-of-the-art video compression performance on high-resolution video.
We provide further evidence that the generative modeling viewpoint can advance the neural video coding field.
arXiv Detail & Related papers (2021-07-28T02:19:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.