A Survey on Inference Optimization Techniques for Mixture of Experts Models
- URL: http://arxiv.org/abs/2412.14219v2
- Date: Wed, 22 Jan 2025 03:33:25 GMT
- Title: A Survey on Inference Optimization Techniques for Mixture of Experts Models
- Authors: Jiacheng Liu, Peng Tang, Wenfeng Wang, Yuhang Ren, Xiaofeng Hou, Pheng-Ann Heng, Minyi Guo, Chao Li,
- Abstract summary: Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.
deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.
This survey analyzes optimization techniques for MoE models across the entire system stack.
- Score: 50.40325411764262
- License:
- Abstract: The emergence of large-scale Mixture of Experts (MoE) models represents a significant advancement in artificial intelligence, offering enhanced model capacity and computational efficiency through conditional computation. However, deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency. This comprehensive survey analyzes optimization techniques for MoE models across the entire system stack. We first establish a taxonomical framework that categorizes optimization approaches into model-level, system-level, and hardware-level optimizations. At the model level, we examine architectural innovations including efficient expert design, attention mechanisms, various compression techniques such as pruning, quantization, and knowledge distillation, as well as algorithm improvement including dynamic routing strategies and expert merging methods. At the system level, we investigate distributed computing approaches, load balancing mechanisms, and efficient scheduling algorithms that enable scalable deployment. Furthermore, we delve into hardware-specific optimizations and co-design strategies that maximize throughput and energy efficiency. This survey provides both a structured overview of existing solutions and identifies key challenges and promising research directions in MoE inference optimization. To facilitate ongoing updates and the sharing of cutting-edge advances in MoE inference optimization research, we have established a repository accessible at https://github.com/MoE-Inf/awesome-moe-inference/.
Related papers
- A Survey of Automatic Prompt Engineering: An Optimization Perspective [18.933465526053453]
This paper presents the first comprehensive survey on automated prompt engineering through a unified optimization-theoretic lens.
We formalize prompt optimization as a problem over discrete, continuous, and hybrid prompt spaces.
We highlight underexplored frontiers in constrained optimization and agent-oriented prompt design.
arXiv Detail & Related papers (2025-02-17T08:48:07Z) - On Accelerating Edge AI: Optimizing Resource-Constrained Environments [1.7355861031903428]
Resource-constrained edge deployments demand AI solutions that balance high performance with stringent compute, memory, and energy limitations.
We present a comprehensive overview of the primary strategies for accelerating deep learning models under such constraints.
arXiv Detail & Related papers (2025-01-25T01:37:03Z) - Equation discovery framework EPDE: Towards a better equation discovery [50.79602839359522]
We enhance the EPDE algorithm -- an evolutionary optimization-based discovery framework.
Our approach generates terms using fundamental building blocks such as elementary functions and individual differentials.
We validate our algorithm's noise resilience and overall performance by comparing its results with those from the state-of-the-art equation discovery framework SINDy.
arXiv Detail & Related papers (2024-12-28T15:58:44Z) - Efficiency optimization of large-scale language models based on deep learning in natural language processing tasks [6.596361762662328]
Internal structure and operation mechanism of large-scale language models are analyzed theoretically.
We evaluate the contribution of adaptive optimization algorithms (such as AdamW), massively parallel computing techniques, and mixed precision training strategies.
arXiv Detail & Related papers (2024-05-20T00:10:00Z) - Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
We focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization.
We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons.
Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models.
arXiv Detail & Related papers (2024-03-20T00:41:12Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Efficient Inverse Design Optimization through Multi-fidelity Simulations, Machine Learning, and Search Space Reduction Strategies [0.8646443773218541]
This paper introduces a methodology designed to augment the inverse design optimization process in scenarios constrained by limited compute.
The proposed methodology is analyzed on two distinct engineering inverse design problems: airfoil inverse design and the scalar field reconstruction problem.
Notably, this method is adaptable across any inverse design application, facilitating a synergy between a representative low-fidelity ML model, and high-fidelity simulation, and can be seamlessly applied across any variety of population-based optimization algorithms.
arXiv Detail & Related papers (2023-12-06T18:20:46Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.