Towards Precise Prediction Uncertainty in GNNs: Refining GNNs with Topology-grouping Strategy
- URL: http://arxiv.org/abs/2412.14223v1
- Date: Wed, 18 Dec 2024 15:39:57 GMT
- Title: Towards Precise Prediction Uncertainty in GNNs: Refining GNNs with Topology-grouping Strategy
- Authors: Hyunjin Seo, Kyusung Seo, Joonhyung Park, Eunho Yang,
- Abstract summary: We introduce **Simi-Mailbox**, a novel approach that categorizes nodes by both neighborhood similarity and their own confidence.
Our method achieves up to 13.79% error reduction compared to uncalibrated GNN predictions.
- Score: 32.31130345375303
- License:
- Abstract: Recent advancements in graph neural networks (GNNs) have highlighted the critical need of calibrating model predictions, with neighborhood prediction similarity recognized as a pivotal component. Existing studies suggest that nodes with analogous neighborhood prediction similarity often exhibit similar calibration characteristics. Building on this insight, recent approaches incorporate neighborhood similarity into node-wise temperature scaling techniques. However, our analysis reveals that this assumption does not hold universally. Calibration errors can differ significantly even among nodes with comparable neighborhood similarity, depending on their confidence levels. This necessitates a re-evaluation of existing GNN calibration methods, as a single, unified approach may lead to sub-optimal calibration. In response, we introduce **Simi-Mailbox**, a novel approach that categorizes nodes by both neighborhood similarity and their own confidence, irrespective of proximity or connectivity. Our method allows fine-grained calibration by employing *group-specific* temperature scaling, with each temperature tailored to address the specific miscalibration level of affiliated nodes, rather than adhering to a uniform trend based on neighborhood similarity. Extensive experiments demonstrate the effectiveness of our **Simi-Mailbox** across diverse datasets on different GNN architectures, achieving up to 13.79\% error reduction compared to uncalibrated GNN predictions.
Related papers
- Accurate and Scalable Estimation of Epistemic Uncertainty for Graph Neural Networks [38.17680286557666]
We propose a novel training framework designed to improve intrinsic GNN uncertainty estimates.
Our framework adapts the principle of centering data to graph data through novel graph anchoring strategies.
Our work provides insights into uncertainty estimation for GNNs, and demonstrates the utility of G-$Delta$UQ in obtaining reliable estimates.
arXiv Detail & Related papers (2024-01-07T00:58:33Z) - SimCalib: Graph Neural Network Calibration based on Similarity between
Nodes [60.92081159963772]
Graph neural networks (GNNs) have exhibited impressive performance in modeling graph data as exemplified in various applications.
We shed light on the relationship between GNN calibration and nodewise similarity via theoretical analysis.
A novel calibration framework, named SimCalib, is accordingly proposed to consider similarity between nodes at global and local levels.
arXiv Detail & Related papers (2023-12-19T04:58:37Z) - What Makes Graph Neural Networks Miscalibrated? [48.00374886504513]
We conduct a systematic study on the calibration qualities of graph neural networks (GNNs)
We identify five factors which influence the calibration of GNNs: general under-confident tendency, diversity of nodewise predictive distributions, distance to training nodes, relative confidence level, and neighborhood similarity.
We design a novel calibration method named Graph Attention Temperature Scaling (GATS), which is tailored for calibrating graph neural networks.
arXiv Detail & Related papers (2022-10-12T16:41:42Z) - On Calibration of Graph Neural Networks for Node Classification [29.738179864433445]
Graph neural networks learn entity and edge embeddings for tasks such as node classification and link prediction.
These models achieve good performance with respect to accuracy, but the confidence scores associated with the predictions might not be calibrated.
We propose a topology-aware calibration method that takes the neighboring nodes into account and yields improved calibration.
arXiv Detail & Related papers (2022-06-03T13:48:10Z) - Learning Graph Neural Networks for Multivariate Time Series Anomaly
Detection [8.688578727646409]
We propose GLUE (Graph Deviation Network with Local Uncertainty Estimation)
GLUE learns complex dependencies between variables and uses them to better identify anomalous behavior.
We also show that GLUE learns meaningful sensor embeddings which clusters similar sensors together.
arXiv Detail & Related papers (2021-11-15T21:05:58Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
Graph neural networks (GNN) have emerged as a vehicle for applying deep network architectures to graph and relational data.
In this paper, we build upon existing work and treat GNN neighbor sampling as a multi-armed bandit problem.
We introduce a newly-designed reward function that introduces some degree of bias designed to reduce variance and avoid unstable, possibly-unbounded payouts.
arXiv Detail & Related papers (2021-03-01T15:55:58Z) - Should Graph Convolution Trust Neighbors? A Simple Causal Inference
Method [114.48708191371524]
Graph Convolutional Network (GCN) is an emerging technique for information retrieval (IR) applications.
This work focuses on the local structure discrepancy of testing nodes, which has received little scrutiny.
We analyze the working mechanism of GCN with causal graph, estimating the causal effect of a node's local structure for the prediction.
arXiv Detail & Related papers (2020-10-22T15:21:47Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Bayesian Graph Neural Networks with Adaptive Connection Sampling [62.51689735630133]
We propose a unified framework for adaptive connection sampling in graph neural networks (GNNs)
The proposed framework not only alleviates over-smoothing and over-fitting tendencies of deep GNNs, but also enables learning with uncertainty in graph analytic tasks with GNNs.
arXiv Detail & Related papers (2020-06-07T07:06:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.