Temporally Consistent Object-Centric Learning by Contrasting Slots
- URL: http://arxiv.org/abs/2412.14295v1
- Date: Wed, 18 Dec 2024 19:46:04 GMT
- Title: Temporally Consistent Object-Centric Learning by Contrasting Slots
- Authors: Anna Manasyan, Maximilian Seitzer, Filip Radovic, Georg Martius, Andrii Zadaianchuk,
- Abstract summary: We introduce a novel object-level temporal contrastive loss for video object-centric models.
Our method significantly improves the temporal consistency of the learned object-centric representations.
- Score: 23.203973564679508
- License:
- Abstract: Unsupervised object-centric learning from videos is a promising approach to extract structured representations from large, unlabeled collections of videos. To support downstream tasks like autonomous control, these representations must be both compositional and temporally consistent. Existing approaches based on recurrent processing often lack long-term stability across frames because their training objective does not enforce temporal consistency. In this work, we introduce a novel object-level temporal contrastive loss for video object-centric models that explicitly promotes temporal consistency. Our method significantly improves the temporal consistency of the learned object-centric representations, yielding more reliable video decompositions that facilitate challenging downstream tasks such as unsupervised object dynamics prediction. Furthermore, the inductive bias added by our loss strongly improves object discovery, leading to state-of-the-art results on both synthetic and real-world datasets, outperforming even weakly-supervised methods that leverage motion masks as additional cues.
Related papers
- Understanding Long Videos via LLM-Powered Entity Relation Graphs [51.13422967711056]
GraphVideoAgent is a framework that maps and monitors the evolving relationships between visual entities throughout the video sequence.
Our approach demonstrates remarkable effectiveness when tested against industry benchmarks.
arXiv Detail & Related papers (2025-01-27T10:57:24Z) - Object-Centric Temporal Consistency via Conditional Autoregressive Inductive Biases [69.46487306858789]
Conditional Autoregressive Slot Attention (CA-SA) is a framework that enhances the temporal consistency of extracted object-centric representations in video-centric vision tasks.
We present qualitative and quantitative results showing that our proposed method outperforms the considered baselines on downstream tasks.
arXiv Detail & Related papers (2024-10-21T07:44:44Z) - Object-Centric Learning for Real-World Videos by Predicting Temporal
Feature Similarities [30.564704737585558]
We propose a novel way to use pre-trained features in the form of a temporal feature similarity loss.
This loss encodes semantic and temporal correlations between image patches and is a natural way to introduce a motion bias for object discovery.
We demonstrate that this loss leads to state-of-the-art performance on the challenging synthetic MOVi datasets.
arXiv Detail & Related papers (2023-06-07T23:18:14Z) - Self-Regulated Learning for Egocentric Video Activity Anticipation [147.9783215348252]
Self-Regulated Learning (SRL) aims to regulate the intermediate representation consecutively to produce representation that emphasizes the novel information in the frame of the current time-stamp.
SRL sharply outperforms existing state-of-the-art in most cases on two egocentric video datasets and two third-person video datasets.
arXiv Detail & Related papers (2021-11-23T03:29:18Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
We propose a network with attention modules to learn contrastive features for video salient object detection.
A co-attention formulation is utilized to combine the low-level and high-level features.
We show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-03T17:40:32Z) - Self-Supervision by Prediction for Object Discovery in Videos [62.87145010885044]
In this paper, we use the prediction task as self-supervision and build a novel object-centric model for image sequence representation.
Our framework can be trained without the help of any manual annotation or pretrained network.
Initial experiments confirm that the proposed pipeline is a promising step towards object-centric video prediction.
arXiv Detail & Related papers (2021-03-09T19:14:33Z) - Hierarchically Decoupled Spatial-Temporal Contrast for Self-supervised
Video Representation Learning [6.523119805288132]
We present a novel technique for self-supervised video representation learning by: (a) decoupling the learning objective into two contrastive subtasks respectively emphasizing spatial and temporal features, and (b) performing it hierarchically to encourage multi-scale understanding.
arXiv Detail & Related papers (2020-11-23T08:05:39Z) - Unsupervised Video Decomposition using Spatio-temporal Iterative
Inference [31.97227651679233]
Multi-object scene decomposition is a fast-emerging problem in learning.
We show that our model has a high accuracy even without color information.
We demonstrate the decomposition, segmentation prediction capabilities of our model and show that it outperforms the state-of-the-art on several benchmark datasets.
arXiv Detail & Related papers (2020-06-25T22:57:17Z) - Self-supervised Video Object Segmentation [76.83567326586162]
The objective of this paper is self-supervised representation learning, with the goal of solving semi-supervised video object segmentation (a.k.a. dense tracking)
We make the following contributions: (i) we propose to improve the existing self-supervised approach, with a simple, yet more effective memory mechanism for long-term correspondence matching; (ii) by augmenting the self-supervised approach with an online adaptation module, our method successfully alleviates tracker drifts caused by spatial-temporal discontinuity; (iv) we demonstrate state-of-the-art results among the self-supervised approaches on DAVIS-2017 and YouTube
arXiv Detail & Related papers (2020-06-22T17:55:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.