Stealing That Free Lunch: Exposing the Limits of Dyna-Style Reinforcement Learning
- URL: http://arxiv.org/abs/2412.14312v2
- Date: Fri, 20 Dec 2024 16:43:29 GMT
- Title: Stealing That Free Lunch: Exposing the Limits of Dyna-Style Reinforcement Learning
- Authors: Brett Barkley, David Fridovich-Keil,
- Abstract summary: Dyna-style off-policy model-based reinforcement learning (DMBRL) algorithms are a family of techniques for generating synthetic state transition data.
This paper identifies and investigates a surprising performance gap observed when applying DMBRL algorithms across different benchmark environments.
- Score: 10.117626902557927
- License:
- Abstract: Dyna-style off-policy model-based reinforcement learning (DMBRL) algorithms are a family of techniques for generating synthetic state transition data and thereby enhancing the sample efficiency of off-policy RL algorithms. This paper identifies and investigates a surprising performance gap observed when applying DMBRL algorithms across different benchmark environments with proprioceptive observations. We show that, while DMBRL algorithms perform well in OpenAI Gym, their performance can drop significantly in DeepMind Control Suite (DMC), even though these settings offer similar tasks and identical physics backends. Modern techniques designed to address several key issues that arise in these settings do not provide a consistent improvement across all environments, and overall our results show that adding synthetic rollouts to the training process -- the backbone of Dyna-style algorithms -- significantly degrades performance across most DMC environments. Our findings contribute to a deeper understanding of several fundamental challenges in model-based RL and show that, like many optimization fields, there is no free lunch when evaluating performance across diverse benchmarks in RL.
Related papers
- Adaptive Data Exploitation in Deep Reinforcement Learning [50.53705050673944]
We introduce ADEPT, a powerful framework to enhance the **data efficiency** and **generalization** in deep reinforcement learning (RL)
Specifically, ADEPT adaptively manages the use of sampled data across different learning stages via multi-armed bandit (MAB) algorithms.
We test ADEPT on benchmarks including Procgen, MiniGrid, and PyBullet.
arXiv Detail & Related papers (2025-01-22T04:01:17Z) - ODRL: A Benchmark for Off-Dynamics Reinforcement Learning [59.72217833812439]
We introduce ODRL, the first benchmark tailored for evaluating off-dynamics RL methods.
ODRL contains four experimental settings where the source and target domains can be either online or offline.
We conduct extensive benchmarking experiments, which show that no method has universal advantages across varied dynamics shifts.
arXiv Detail & Related papers (2024-10-28T05:29:38Z) - Heuristic Algorithm-based Action Masking Reinforcement Learning (HAAM-RL) with Ensemble Inference Method [0.0]
This paper presents a novel reinforcement learning approach called HAAMRL (Heuristic ensemble-based Action Masking Reinforcement Learning)
The proposed approach exhibits superior performance and capability generalization, indicating superior effectiveness in optimizing complex manufacturing processes.
arXiv Detail & Related papers (2024-03-21T03:42:39Z) - M2CURL: Sample-Efficient Multimodal Reinforcement Learning via Self-Supervised Representation Learning for Robotic Manipulation [0.7564784873669823]
We propose Multimodal Contrastive Unsupervised Reinforcement Learning (M2CURL)
Our approach employs a novel multimodal self-supervised learning technique that learns efficient representations and contributes to faster convergence of RL algorithms.
We evaluate M2CURL on the Tactile Gym 2 simulator and we show that it significantly enhances the learning efficiency in different manipulation tasks.
arXiv Detail & Related papers (2024-01-30T14:09:35Z) - A Neuromorphic Architecture for Reinforcement Learning from Real-Valued
Observations [0.34410212782758043]
Reinforcement Learning (RL) provides a powerful framework for decision-making in complex environments.
This paper presents a novel Spiking Neural Network (SNN) architecture for solving RL problems with real-valued observations.
arXiv Detail & Related papers (2023-07-06T12:33:34Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Behavioral Priors and Dynamics Models: Improving Performance and Domain
Transfer in Offline RL [82.93243616342275]
We introduce Offline Model-based RL with Adaptive Behavioral Priors (MABE)
MABE is based on the finding that dynamics models, which support within-domain generalization, and behavioral priors, which support cross-domain generalization, are complementary.
In experiments that require cross-domain generalization, we find that MABE outperforms prior methods.
arXiv Detail & Related papers (2021-06-16T20:48:49Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Improved Context-Based Offline Meta-RL with Attention and Contrastive
Learning [1.3106063755117399]
We improve upon one of the SOTA OMRL algorithms, FOCAL, by incorporating intra-task attention mechanism and inter-task contrastive learning objectives.
Theoretical analysis and experiments are presented to demonstrate the superior performance, efficiency and robustness of our end-to-end and model free method.
arXiv Detail & Related papers (2021-02-22T05:05:16Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.