Efficient construction of witnesses of stellar rank of nonclassical states of light
- URL: http://arxiv.org/abs/2412.14356v1
- Date: Wed, 18 Dec 2024 21:43:52 GMT
- Title: Efficient construction of witnesses of stellar rank of nonclassical states of light
- Authors: Jaromír Fiurášek,
- Abstract summary: We present an efficient method for construction of general witnesses of the stellar rank.
We illustrate the procedure by constructing stellar rank witnesses based on pairs of Fock state probabilities and also based on pairs of fidelities with superpositions of coherent states.
- Score: 0.0
- License:
- Abstract: The stellar hierarchy of quantum states of light classifies the states according to the Fock-state resources that are required for their generation together with unitary Gaussian operations. States with stellar rank n can be also equivalently referred to as genuinely n-photon quantum non-Gaussian states. Here we present an efficient method for construction of general witnesses of the stellar rank. The number of parameters that need to be optimized in order to determine the witness does not depend on the stellar rank and it scales quadratically with the number of modes. We illustrate the procedure by constructing stellar rank witnesses based on pairs of Fock state probabilities and also based on pairs of fidelities with superpositions of coherent states.
Related papers
- An Exponential Reduction in Training Data Sizes for Machine Learning
Derived Entanglement Witnesses [45.17332714965704]
We propose a support vector machine (SVM) based approach for generating an entanglement witness.
For $N$ qubits, the SVM portion of this approach requires only $O(6N)$ training states, whereas an existing method needs $O(24N)$.
arXiv Detail & Related papers (2023-11-30T00:45:04Z) - SU(1,1)-displaced coherent states, photon counting and squeezing [0.0]
We revisit the Perelomov SU (1,1) displaced coherent states as possible quantum states of light.
We study the counting and squeezing properties of the states in terms of k and the number of photons in the original displaced state.
arXiv Detail & Related papers (2023-04-17T07:30:37Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems.
This paper shows that, for most random Hamiltonians, the maximally mixed state is a sufficiently good trial state.
Phase estimation efficiently prepares states with energy arbitrarily close to the ground energy.
arXiv Detail & Related papers (2023-02-07T10:57:36Z) - Coherent dynamics in a five-level atomic system [62.997667081978825]
coherent control of multi-partite quantum systems is one of the central prerequisites in quantum information processing.
Laser-cooled neon atoms in the metastable state of state $1s2 2s2 2p5 3s$ are prepared.
Coherence properties of the prepared states are studied using Ramsey and spin echo measurements.
arXiv Detail & Related papers (2022-10-21T11:44:15Z) - Quantum state truncation using an optical parametric amplifier and a
beamsplitter [0.0]
We present a scheme of quantum state truncation in the Fock basis (quantum scissors)
A truncated state is generated after performing photodetections in the global state.
We quantify the nonclassicality degree of the generated states using the Wigner-Yanase information measure.
arXiv Detail & Related papers (2021-09-24T15:21:12Z) - Separability and entanglement in superpositions of quantum states [0.0]
We study the superpositions of a pure entangled state and a pure product state, when the amplitudes corresponding to the states appearing in any superposition are nonzero.
All such superpositions produce only entangled states if the initial entangled state has Schmidt rank three or higher.
We find that conditional inseparability of superpositions help in identifying strategies for conclusive local discrimination of shared quantum ensembles.
arXiv Detail & Related papers (2021-08-04T19:48:29Z) - Machine-Learning-Derived Entanglement Witnesses [55.76279816849472]
We show a correspondence between linear support vector machines (SVMs) and entanglement witnesses.
We use this correspondence to generate entanglement witnesses for bipartite and tripartite qubit (and qudit) target entangled states.
arXiv Detail & Related papers (2021-07-05T22:28:02Z) - Generalization of group-theoretic coherent states for variational
calculations [1.2599533416395767]
We introduce new families of pure quantum states that are constructed on top of the well-known Gilmore-Perelomov group-theoretic coherent states.
We generate entanglement not found in the coherent states themselves, while retaining many of their desirable properties.
arXiv Detail & Related papers (2020-12-22T16:50:25Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Coherent preorder of quantum states [0.0]
We propose an approach to realize coherence distillation from rank-two mixed coherent states to $q$-level maximally coherent states.
One scheme of coherence manipulation between rank-two mixed states is also presented.
arXiv Detail & Related papers (2020-10-29T02:33:58Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.