Accelerated Patient-Specific Calibration via Differentiable Hemodynamics Simulations
- URL: http://arxiv.org/abs/2412.14572v1
- Date: Thu, 19 Dec 2024 06:42:57 GMT
- Title: Accelerated Patient-Specific Calibration via Differentiable Hemodynamics Simulations
- Authors: Diego Renner, Georgios Kissas,
- Abstract summary: One of the goals of personalized medicine is to tailor diagnostics to individual patients.
Personalizing computational models translates to considering patient-specific flow conditions.
We propose a personalized diagnostic procedure based on a differentiable 0D-1D Navier-Stokes reduced order model solver.
- Score: 1.688134675717698
- License:
- Abstract: One of the goals of personalized medicine is to tailor diagnostics to individual patients. Diagnostics are performed in practice by measuring quantities, called biomarkers, that indicate the existence and progress of a disease. In common cardiovascular diseases, such as hypertension, biomarkers that are closely related to the clinical representation of a patient can be predicted using computational models. Personalizing computational models translates to considering patient-specific flow conditions, for example, the compliance of blood vessels that cannot be a priori known and quantities such as the patient geometry that can be measured using imaging. Therefore, a patient is identified by a set of measurable and nonmeasurable parameters needed to well-define a computational model; else, the computational model is not personalized, meaning it is prone to large prediction errors. Therefore, to personalize a computational model, sufficient information needs to be extracted from the data. The current methods by which this is done are either inefficient, due to relying on slow-converging optimization methods, or hard to interpret, due to using `black box` deep-learning algorithms. We propose a personalized diagnostic procedure based on a differentiable 0D-1D Navier-Stokes reduced order model solver and fast parameter inference methods that take advantage of gradients through the solver. By providing a faster method for performing parameter inference and sensitivity analysis through differentiability while maintaining the interpretability of well-understood mathematical models and numerical methods, the best of both worlds is combined. The performance of the proposed solver is validated against a well-established process on different geometries, and different parameter inference processes are successfully performed.
Related papers
- Towards a perturbation-based explanation for medical AI as differentiable programs [0.0]
In medicine and healthcare, there is a particular demand for sufficient and objective explainability of the outcome generated by AI models.
This work examines a numerical availability of the Jacobian matrix of deep learning models that measures how stably a model responses against small perturbations added to the input.
This is a first step towards a perturbation-based explanation, which will assist medical practitioners in understanding and interpreting the response of the AI model in its clinical application.
arXiv Detail & Related papers (2025-02-19T07:56:23Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
We propose a unified uncertainty estimation approach for a wide range of cognitive diagnosis models.
We decompose the uncertainty of diagnostic parameters into data aspect and model aspect.
Our method is effective and can provide useful insights into the uncertainty of cognitive diagnosis.
arXiv Detail & Related papers (2024-03-09T13:48:20Z) - Kernel Cox partially linear regression: building predictive models for
cancer patients' survival [4.230753712933184]
We build a kernel Cox proportional hazards semi-parametric model and propose a novel regularized garrotized kernel machine (RegGKM) method to fit the model.
We use the kernel machine method to describe the complex relationship between survival and predictors, while automatically removing irrelevant parametric and non-parametric predictors.
Our results can help classify patients into groups with different death risks, facilitating treatment for better clinical outcomes.
arXiv Detail & Related papers (2023-10-11T04:27:54Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
We introduce the Neural Eigen Differential Equation algorithm (NESDE)
NESDE provides individualized modeling, tunable generalization to new treatment policies, and fast, continuous, closed-form prediction.
We demonstrate the robustness of NESDE in both synthetic and real medical problems, and use the learned dynamics to publish simulated medical gym environments.
arXiv Detail & Related papers (2023-06-24T17:01:51Z) - Liver Infection Prediction Analysis using Machine Learning to Evaluate
Analytical Performance in Neural Networks by Optimization Techniques [0.0]
This paper deals with various machine learning algorithms on different liver illness datasets to evaluate the analytical performance.
The selected classification algorithms analyze the difference in results and find out the most excellent categorization models for liver disease.
arXiv Detail & Related papers (2023-05-11T14:40:39Z) - Data-driven reduced-order modelling for blood flow simulations with
geometry-informed snapshots [0.0]
A data-driven surrogate model is proposed for the efficient prediction of blood flow simulations on similar but distinct domains.
A non-intrusive reduced-order model for geometrical parameters is constructed using proper decomposition.
A radial basis function interpolator is trained for predicting the reduced coefficients of the reduced-order model.
arXiv Detail & Related papers (2023-02-21T21:18:17Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Bridging the Gap Between Patient-specific and Patient-independent
Seizure Prediction via Knowledge Distillation [7.2666838978096875]
Existing approaches typically train models in a patient-specific fashion due to the highly personalized characteristics of epileptic signals.
A patient-specific model can then be obtained with the help of distilled knowledge and additional personalized data.
Five state-of-the-art seizure prediction methods are trained on the CHB-MIT sEEG database with our proposed scheme.
arXiv Detail & Related papers (2022-02-25T10:30:29Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.