Training Graph Neural Networks Using Non-Robust Samples
- URL: http://arxiv.org/abs/2412.14738v6
- Date: Tue, 21 Jan 2025 07:43:12 GMT
- Title: Training Graph Neural Networks Using Non-Robust Samples
- Authors: Yongyu Wang,
- Abstract summary: Graph Neural Networks (GNNs) are highly effective neural networks for processing graph -- structured data.
GNNs leverage both the graph structure, which represents the relationships between data points, and the feature matrix of the data to optimize their feature representation.
This paper proposes a novel method for selecting noise-sensitive training samples from the original training set to construct a smaller yet more effective training set for model training.
- Score: 2.1937382384136637
- License:
- Abstract: Graph Neural Networks (GNNs) are a highly effective neural network architecture for processing graph -- structured data. Unlike traditional neural networks that rely solely on the features of the data as input, GNNs leverage both the graph structure, which represents the relationships between data points, and the feature matrix of the data to optimize their feature representation. This unique capability enables GNNs to achieve superior performance across various tasks. However, it also makes GNNs more susceptible to noise from both the graph structure and data features, which can significantly increase the training difficulty and degrade their performance. To address this issue, this paper proposes a novel method for selecting noise-sensitive training samples from the original training set to construct a smaller yet more effective training set for model training. These samples are used to help improve the model's ability to correctly process data in noisy environments. We have evaluated our approach on three of the most classical GNN models -- GCN, GAT, and GraphSAGE -- as well as three widely used benchmark datasets: Cora, Citeseer, and PubMed. Our experiments demonstrate that the proposed method can substantially boost the training of Graph Neural Networks compared to using randomly sampled training sets of the same size from the original training set and the larger original full training set.
Related papers
- Stealing Training Graphs from Graph Neural Networks [54.52392250297907]
Graph Neural Networks (GNNs) have shown promising results in modeling graphs in various tasks.
As neural networks can memorize the training samples, the model parameters of GNNs have a high risk of leaking private training data.
We investigate a novel problem of stealing graphs from trained GNNs.
arXiv Detail & Related papers (2024-11-17T23:15:36Z) - GOODAT: Towards Test-time Graph Out-of-Distribution Detection [103.40396427724667]
Graph neural networks (GNNs) have found widespread application in modeling graph data across diverse domains.
Recent studies have explored graph OOD detection, often focusing on training a specific model or modifying the data on top of a well-trained GNN.
This paper introduces a data-centric, unsupervised, and plug-and-play solution that operates independently of training data and modifications of GNN architecture.
arXiv Detail & Related papers (2024-01-10T08:37:39Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - Ensemble Learning for Graph Neural Networks [28.3650473174488]
Graph Neural Networks (GNNs) have shown success in various fields for learning from graph-structured data.
This paper investigates the application of ensemble learning techniques to improve the performance and robustness of GNNs.
arXiv Detail & Related papers (2023-10-22T03:55:13Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Data-Free Adversarial Knowledge Distillation for Graph Neural Networks [62.71646916191515]
We propose the first end-to-end framework for data-free adversarial knowledge distillation on graph structured data (DFAD-GNN)
To be specific, our DFAD-GNN employs a generative adversarial network, which mainly consists of three components: a pre-trained teacher model and a student model are regarded as two discriminators, and a generator is utilized for deriving training graphs to distill knowledge from the teacher model into the student model.
Our DFAD-GNN significantly surpasses state-of-the-art data-free baselines in the graph classification task.
arXiv Detail & Related papers (2022-05-08T08:19:40Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Scalable Consistency Training for Graph Neural Networks via
Self-Ensemble Self-Distillation [13.815063206114713]
We introduce a novel consistency training method to improve accuracy of graph neural networks (GNNs)
For a target node we generate different neighborhood expansions, and distill the knowledge of the average of the predictions to the GNN.
Our method approximates the expected prediction of the possible neighborhood samples and practically only requires a few samples.
arXiv Detail & Related papers (2021-10-12T19:24:42Z) - Variational models for signal processing with Graph Neural Networks [3.5939555573102853]
This paper is devoted to signal processing on point-clouds by means of neural networks.
In this work, we investigate the use of variational models for such Graph Neural Networks to process signals on graphs for unsupervised learning.
arXiv Detail & Related papers (2021-03-30T13:31:11Z) - Ripple Walk Training: A Subgraph-based training framework for Large and
Deep Graph Neural Network [10.36962234388739]
We propose a general subgraph-based training framework, namely Ripple Walk Training (RWT), for deep and large graph neural networks.
RWT samples subgraphs from the full graph to constitute a mini-batch, and the full GNN is updated based on the mini-batch gradient.
Extensive experiments on different sizes of graphs demonstrate the effectiveness and efficiency of RWT in training various GNNs.
arXiv Detail & Related papers (2020-02-17T19:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.