Recurrence method in Non-Hermitian Systems
- URL: http://arxiv.org/abs/2412.14912v1
- Date: Thu, 19 Dec 2024 14:44:42 GMT
- Title: Recurrence method in Non-Hermitian Systems
- Authors: Haoyan Chen, Yi Zhang,
- Abstract summary: We propose a novel and systematic recurrence method for the energy spectra of non-Hermitian systems under open boundary conditions.
Our formalism exhibits better accuracy and performance on multi-band non-Hermitian systems than numerical diagonalization or the non-Bloch band theory.
Our recurrence method offers a novel and favorable formalism to the intriguing physics of non-Hermitian systems under open boundary conditions.
- Score: 3.8601741392210434
- License:
- Abstract: We propose a novel and systematic recurrence method for the energy spectra of non-Hermitian systems under open boundary conditions based on the recurrence relations of their characteristic polynomials. Our formalism exhibits better accuracy and performance on multi-band non-Hermitian systems than numerical diagonalization or the non-Bloch band theory. It also provides a targeted and efficient formulation for the non-Hermitian edge spectra. As demonstrations, we derive general expressions for both the bulk and edge spectra of multi-band non-Hermitian models with nearest-neighbor hopping and under open boundary conditions, such as the non-Hermitian Su-Schrieffer-Heeger and Rice-Mele models and the non-Hermitian Hofstadter butterfly - 2D lattice models in the presence of non-reciprocity and perpendicular magnetic fields, which is only made possible by the significantly lower complexity of the recurrence method. In addition, we use the recurrence method to study non-Hermitian edge physics, including the size-parity effect and the stability of the topological edge modes against boundary perturbations. Our recurrence method offers a novel and favorable formalism to the intriguing physics of non-Hermitian systems under open boundary conditions.
Related papers
- Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Fixed lines in a non-Hermitian Kitaev chain with spatially balanced
pairing processes [0.0]
Exact solutions for non-Hermitian quantum many-body systems are rare but may provide valuable insights into the interplay between Hermitian and non-Hermitian components.
We report our investigation of a non-Hermitian variant of a p-wave Kitaev chain by introducing staggered imbalanced pair creation and quench terms.
arXiv Detail & Related papers (2023-04-30T14:41:42Z) - Real-space detection and manipulation of topological edge modes with
ultracold atoms [56.34005280792013]
We demonstrate an experimental protocol for realizing chiral edge modes in optical lattices.
We show how to efficiently prepare particles in these edge modes in three distinct Floquet topological regimes.
We study how edge modes emerge at the interface and how the group velocity of the particles is modified as the sharpness of the potential step is varied.
arXiv Detail & Related papers (2023-04-04T17:36:30Z) - Topological multi-mode waveguide QED [49.1574468325115]
We show how to take advantage of topologically protected propagating modes by interfacing them with quantum emitters.
Such capabilities pave the way for generating quantum gates among topologically protected photons as well as generating more complex entangled states of light in topological channels.
arXiv Detail & Related papers (2022-07-05T14:48:50Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - The topological counterparts of non-Hermitian SSH models [0.0]
We propose a method to construct the topological equivalent models of the non-Hermitian dimerized lattices with the similarity transformations.
As an illustration, we apply this approach to several representative non-Hermitian SSH models.
arXiv Detail & Related papers (2021-03-23T08:58:43Z) - Hermitian zero modes protected by nonnormality: Application of
pseudospectra [0.0]
We develop a theory of zero modes with quantum anomaly for general Hermitian lattice systems.
We relate exact zero modes and quasi-zero modes of a Hermitian system to spectra and pseudospectra of a non-Hermitian system.
Our theory reveals the presence of nonnormality-protected zero modes, as well as the usefulness of the nonnormality and pseudospectra as tools for topological and/or non-Hermitian physics.
arXiv Detail & Related papers (2020-05-04T17:58:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.