Single-Photon Advantage in Quantum Cryptography Beyond QKD
- URL: http://arxiv.org/abs/2412.14993v1
- Date: Thu, 19 Dec 2024 16:06:07 GMT
- Title: Single-Photon Advantage in Quantum Cryptography Beyond QKD
- Authors: Daniel A. Vajner, Koray Kaymazlar, Fenja Drauschke, Lucas Rickert, Martin von Helversen, Hanqing Liu, Shulun Li, Haiqiao Ni, Zhichuan Niu, Anna Pappa, Tobias Heindel,
- Abstract summary: We experimentally implement a quantum strong coin flipping protocol using single-photon states.
Our work represents a major advance towards the implementation of complex cryptographic tasks in a future quantum internet.
- Score: 0.545520830707066
- License:
- Abstract: In quantum cryptography, fundamental laws of quantum physics are exploited to enhance the security of cryptographic tasks. Quantum key distribution is by far the most studied protocol to date, enabling the establishment of a secret key between trusted parties. However, there exist many practical use-cases in communication networks, which also involve parties in distrustful settings. The most fundamental quantum cryptographic building block in such a distrustful setting is quantum coin flipping, which provides an advantage compared to its classical equivalent. So far, few experimental studies on quantum coin flipping have been reported, all of which used probabilistic quantum light sources facing fundamental limitations. Here, we experimentally implement a quantum strong coin flipping protocol using single-photon states and demonstrate an advantage compared to both classical realizations and implementations using faint laser pulses. We achieve this by employing a state-of-the-art deterministic single-photon source based on the Purcell-enhanced emission of a semiconductor quantum dot in combination with fast polarization-state encoding enabling a quantum bit error ratio below 3%, required for the successful execution of the protocol. The reduced multi-photon emission yields a smaller bias of the coin flipping protocol compared to an attenuated laser implementation, both in simulations and in the experiment. By demonstrating a single-photon quantum advantage in a cryptographic primitive beyond QKD, our work represents a major advance towards the implementation of complex cryptographic tasks in a future quantum internet.
Related papers
- Impact of the exciton fine structure splitting and measurement orientations on the robustness of cryptographic keys generated via the quantum protocol E91 [0.0]
This work focuses on the performance of the E91 quantum key distribution protocol under the variation of two elements.
We obtain analytical expressions for the protocol's secret key rate and Bell's parameter as functions of the studied phase and angles.
Our results show that the performance of the quantum transmission is highly impacted by the product between the exciton lifetime and the quantum dot's fine structure splitting.
arXiv Detail & Related papers (2024-12-04T22:46:45Z) - Experimental practical quantum tokens with transaction time advantage [22.906545445051876]
We report the first full experimental demonstration of quantum S-tokens, proven secure despite errors, losses and experimental imperfections.
We demonstrate a transaction time advantage over intra-city 2.77 km and inter-city 60.54 km optical fibre networks, compared with optimal classical cross-checking schemes.
arXiv Detail & Related papers (2024-08-23T13:42:00Z) - Single-Round Proofs of Quantumness from Knowledge Assumptions [41.94295877935867]
A proof of quantumness is an efficiently verifiable interactive test that an efficient quantum computer can pass.
Existing single-round protocols require large quantum circuits, whereas multi-round ones use smaller circuits but require experimentally challenging mid-circuit measurements.
We construct efficient single-round proofs of quantumness based on existing knowledge assumptions.
arXiv Detail & Related papers (2024-05-24T17:33:10Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
We present an application of quantum transfer learning for detecting cracks in gray value images.
We compare the performance and training time of PennyLane's standard qubits with IBM's qasm_simulator and real backends.
arXiv Detail & Related papers (2023-07-31T14:45:29Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Demonstration of quantum advantage by a joint detection receiver for
optical communications using quantum belief propagation on a trapped-ion
device [0.7758302353877525]
We present an experimental realization of a quantum joint detection receiver for binary phase shift keying codewords of a 3-bit linear tree code.
The receiver, translated to a quantum circuit, was experimentally implemented on a trapped-ion device.
We provide an experimental framework that surpasses the quantum limit on the minimum average decoding error probability.
arXiv Detail & Related papers (2021-02-25T18:05:31Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Quantum key distribution with entangled photons generated on-demand by a
quantum dot [0.0]
Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters.
We experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches.
Our field study highlights that quantum-dot entangled-photon sources are ready to go beyond laboratory experiments.
arXiv Detail & Related papers (2020-07-24T18:21:19Z) - Experimental study of continuous variable quantum key distribution [0.22099217573031674]
main technological factors limiting the communication rates of quantum cryptography systems by single photon are mainly related to the choice of the encoding method.
We propose a new reconciliation method based on Turbo codes.
Our method leads to a significant improvement of the protocol security and a large decrease of the QBER.
arXiv Detail & Related papers (2020-02-16T21:50:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.