Chinese SafetyQA: A Safety Short-form Factuality Benchmark for Large Language Models
- URL: http://arxiv.org/abs/2412.15265v2
- Date: Mon, 23 Dec 2024 11:06:56 GMT
- Title: Chinese SafetyQA: A Safety Short-form Factuality Benchmark for Large Language Models
- Authors: Yingshui Tan, Boren Zheng, Baihui Zheng, Kerui Cao, Huiyun Jing, Jincheng Wei, Jiaheng Liu, Yancheng He, Wenbo Su, Xiangyong Zhu, Bo Zheng, Kaifu Zhang,
- Abstract summary: The safety of large language models is closely linked to their accuracy, comprehensiveness, and clarity of their understanding of safety knowledge.
This factuality ability is crucial in determining whether these models can be deployed and applied safely and compliantly within specific regions.
To address these challenges and better evaluate the factuality ability of LLMs to answer short questions, we introduce the Chinese SafetyQA benchmark.
- Score: 18.056739637824954
- License:
- Abstract: With the rapid advancement of Large Language Models (LLMs), significant safety concerns have emerged. Fundamentally, the safety of large language models is closely linked to the accuracy, comprehensiveness, and clarity of their understanding of safety knowledge, particularly in domains such as law, policy and ethics. This factuality ability is crucial in determining whether these models can be deployed and applied safely and compliantly within specific regions. To address these challenges and better evaluate the factuality ability of LLMs to answer short questions, we introduce the Chinese SafetyQA benchmark. Chinese SafetyQA has several properties (i.e., Chinese, Diverse, High-quality, Static, Easy-to-evaluate, Safety-related, Harmless). Based on Chinese SafetyQA, we perform a comprehensive evaluation on the factuality abilities of existing LLMs and analyze how these capabilities relate to LLM abilities, e.g., RAG ability and robustness against attacks.
Related papers
- ChineseSafe: A Chinese Benchmark for Evaluating Safety in Large Language Models [13.911977148887873]
This work presents a Chinese safety benchmark (ChineseSafe) to facilitate research on the content safety of large language models.
To align with the regulations for Chinese Internet content moderation, our ChineseSafe contains 205,034 examples across 4 classes and 10 sub-classes of safety issues.
The results reveal that many LLMs exhibit vulnerability to certain types of safety issues, leading to legal risks in China.
arXiv Detail & Related papers (2024-10-24T07:25:29Z) - Multimodal Situational Safety [73.63981779844916]
We present the first evaluation and analysis of a novel safety challenge termed Multimodal Situational Safety.
For an MLLM to respond safely, whether through language or action, it often needs to assess the safety implications of a language query within its corresponding visual context.
We develop the Multimodal Situational Safety benchmark (MSSBench) to assess the situational safety performance of current MLLMs.
arXiv Detail & Related papers (2024-10-08T16:16:07Z) - CHiSafetyBench: A Chinese Hierarchical Safety Benchmark for Large Language Models [7.054112690519648]
CHiSafetyBench is a safety benchmark for evaluating large language models' capabilities in identifying risky content and refusing answering risky questions in Chinese contexts.
This dataset comprises two types of tasks: multiple-choice questions and question-answering, evaluating LLMs from the perspectives of risk content identification and the ability to refuse answering risky questions respectively.
Our experiments reveal the varying performance of different models across various safety domains, indicating that all models possess considerable potential for improvement in Chinese safety capabilities.
arXiv Detail & Related papers (2024-06-14T06:47:40Z) - SALAD-Bench: A Hierarchical and Comprehensive Safety Benchmark for Large Language Models [107.82336341926134]
SALAD-Bench is a safety benchmark specifically designed for evaluating Large Language Models (LLMs)
It transcends conventional benchmarks through its large scale, rich diversity, intricate taxonomy spanning three levels, and versatile functionalities.
arXiv Detail & Related papers (2024-02-07T17:33:54Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
Large Language Models (LLMs) play an increasingly pivotal role in natural language processing applications.
This paper presents Safety and Over-Defensiveness Evaluation (SODE) benchmark.
arXiv Detail & Related papers (2023-12-30T17:37:06Z) - SafetyBench: Evaluating the Safety of Large Language Models [54.878612385780805]
SafetyBench is a comprehensive benchmark for evaluating the safety of Large Language Models (LLMs)
It comprises 11,435 diverse multiple choice questions spanning across 7 distinct categories of safety concerns.
Our tests over 25 popular Chinese and English LLMs in both zero-shot and few-shot settings reveal a substantial performance advantage for GPT-4 over its counterparts.
arXiv Detail & Related papers (2023-09-13T15:56:50Z) - CValues: Measuring the Values of Chinese Large Language Models from
Safety to Responsibility [62.74405775089802]
We present CValues, the first Chinese human values evaluation benchmark to measure the alignment ability of LLMs.
As a result, we have manually collected adversarial safety prompts across 10 scenarios and induced responsibility prompts from 8 domains.
Our findings suggest that while most Chinese LLMs perform well in terms of safety, there is considerable room for improvement in terms of responsibility.
arXiv Detail & Related papers (2023-07-19T01:22:40Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
Large language models (LLMs) may generate insulting and discriminatory content, reflect incorrect social values, and may be used for malicious purposes.
To promote the deployment of safe, responsible, and ethical AI, we release SafetyPrompts including 100k augmented prompts and responses by LLMs.
arXiv Detail & Related papers (2023-04-20T16:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.