Self-Evolution Knowledge Distillation for LLM-based Machine Translation
- URL: http://arxiv.org/abs/2412.15303v1
- Date: Thu, 19 Dec 2024 12:24:15 GMT
- Title: Self-Evolution Knowledge Distillation for LLM-based Machine Translation
- Authors: Yuncheng Song, Liang Ding, Changtong Zan, Shujian Huang,
- Abstract summary: We propose a distillation strategy called Self-Evolution KD.
The core of this approach involves dynamically integrating teacher distribution and one-hot distribution of ground truth into the student distribution as prior knowledge.
Experimental results show our method brings an average improvement of approximately 1.4 SacreBLEU points across four translation directions in the WMT22 test sets.
- Score: 36.01859033056453
- License:
- Abstract: Knowledge distillation (KD) has shown great promise in transferring knowledge from larger teacher models to smaller student models. However, existing KD strategies for large language models often minimize output distributions between student and teacher models indiscriminately for each token. This overlooks the imbalanced nature of tokens and their varying transfer difficulties. In response, we propose a distillation strategy called Self-Evolution KD. The core of this approach involves dynamically integrating teacher distribution and one-hot distribution of ground truth into the student distribution as prior knowledge, which promotes the distillation process. It adjusts the ratio of prior knowledge based on token learning difficulty, fully leveraging the teacher model's potential. Experimental results show our method brings an average improvement of approximately 1.4 SacreBLEU points across four translation directions in the WMT22 test sets. Further analysis indicates that the improvement comes from better knowledge transfer from teachers, confirming our hypothesis.
Related papers
- Warmup-Distill: Bridge the Distribution Mismatch between Teacher and Student before Knowledge Distillation [84.38105530043741]
We propose Warmup-Distill, which aligns the distillation of the student to that of the teacher in advance of distillation.
Experiments on the seven benchmarks demonstrate that Warmup-Distill could provide a warmup student more suitable for distillation.
arXiv Detail & Related papers (2025-02-17T12:58:12Z) - Speculative Knowledge Distillation: Bridging the Teacher-Student Gap Through Interleaved Sampling [81.00825302340984]
We introduce Speculative Knowledge Distillation (SKD) to generate high-quality training data on-the-fly.
In SKD, the student proposes tokens, and the teacher replaces poorly ranked ones based on its own distribution.
We evaluate SKD on various text generation tasks, including translation, summarization, math, and instruction following.
arXiv Detail & Related papers (2024-10-15T06:51:25Z) - Enhancing Knowledge Distillation of Large Language Models through Efficient Multi-Modal Distribution Alignment [10.104085497265004]
We propose Ranking Loss based Knowledge Distillation (RLKD), which encourages consistency of peak predictions between the teacher and student models.
Our method enables the student model to better learn the multi-modal distributions of the teacher model, leading to a significant performance improvement in various downstream tasks.
arXiv Detail & Related papers (2024-09-19T08:06:42Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
Knowledge distillation (KD) is a technique that compresses large teacher models by training smaller student models to mimic them.
This paper introduces Online Knowledge Distillation (OKD), where the teacher network integrates small online modules to concurrently train with the student model.
OKD achieves or exceeds the performance of leading methods in various model architectures and sizes, reducing training time by up to fourfold.
arXiv Detail & Related papers (2024-09-19T07:05:26Z) - Improve Knowledge Distillation via Label Revision and Data Selection [37.74822443555646]
This paper proposes to rectify the teacher's inaccurate predictions using the ground truth.
In the latter, we introduce a data selection technique to choose suitable training samples to be supervised by the teacher.
Experiment results demonstrate the effectiveness of our proposed method, and show that our method can be combined with other distillation approaches.
arXiv Detail & Related papers (2024-04-03T02:41:16Z) - Comparative Knowledge Distillation [102.35425896967791]
Traditional Knowledge Distillation (KD) assumes readily available access to teacher models for frequent inference.
We propose Comparative Knowledge Distillation (CKD), which encourages student models to understand the nuanced differences in a teacher model's interpretations of samples.
CKD consistently outperforms state of the art data augmentation and KD techniques.
arXiv Detail & Related papers (2023-11-03T21:55:33Z) - AD-KD: Attribution-Driven Knowledge Distillation for Language Model
Compression [26.474962405945316]
We present a novel attribution-driven knowledge distillation approach to compress pre-trained language models.
To enhance the knowledge transfer of model reasoning and generalization, we explore multi-view attribution distillation on all potential decisions of the teacher.
arXiv Detail & Related papers (2023-05-17T07:40:12Z) - Unbiased Knowledge Distillation for Recommendation [66.82575287129728]
Knowledge distillation (KD) has been applied in recommender systems (RS) to reduce inference latency.
Traditional solutions first train a full teacher model from the training data, and then transfer its knowledge to supervise the learning of a compact student model.
We find such a standard distillation paradigm would incur serious bias issue -- popular items are more heavily recommended after the distillation.
arXiv Detail & Related papers (2022-11-27T05:14:03Z) - Better Teacher Better Student: Dynamic Prior Knowledge for Knowledge
Distillation [70.92135839545314]
We propose the dynamic prior knowledge (DPK), which integrates part of teacher's features as the prior knowledge before the feature distillation.
Our DPK makes the performance of the student model positively correlated with that of the teacher model, which means that we can further boost the accuracy of students by applying larger teachers.
arXiv Detail & Related papers (2022-06-13T11:52:13Z) - Learning Interpretation with Explainable Knowledge Distillation [28.00216413365036]
Knowledge Distillation (KD) has been considered as a key solution in model compression and acceleration in recent years.
We propose a novel explainable knowledge distillation model, called XDistillation, through which both the performance the explanations' information are transferred from the teacher model to the student model.
Our experiments shows that models trained by XDistillation outperform those trained by conventional KD methods in term of predictive accuracy and also faithfulness to the teacher models.
arXiv Detail & Related papers (2021-11-12T21:18:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.