Tree-of-Code: A Tree-Structured Exploring Framework for End-to-End Code Generation and Execution in Complex Task Handling
- URL: http://arxiv.org/abs/2412.15305v1
- Date: Thu, 19 Dec 2024 12:31:22 GMT
- Title: Tree-of-Code: A Tree-Structured Exploring Framework for End-to-End Code Generation and Execution in Complex Task Handling
- Authors: Ziyi Ni, Yifan Li, Ning Yang, Dou Shen, Pin Lv, Daxiang Dong,
- Abstract summary: Tree-of-Code boosts accuracy by nearly 20% over CodeAct with less than 1/4 turns.
Several LLMs even perform better on one-turn CodeProgram than on multi-turn CodeAct.
- Score: 4.597983734278579
- License:
- Abstract: Solving complex reasoning tasks is a key real-world application of agents. Thanks to the pretraining of Large Language Models (LLMs) on code data, recent approaches like CodeAct successfully use code as LLM agents' action, achieving good results. However, CodeAct greedily generates the next action's code block by relying on fragmented thoughts, resulting in inconsistency and instability. Moreover, CodeAct lacks action-related ground-truth (GT), making its supervision signals and termination conditions questionable in multi-turn interactions. To address these issues, we first introduce a simple yet effective end-to-end code generation paradigm, CodeProgram, which leverages code's systematic logic to align with global reasoning and enable cohesive problem-solving. Then, we propose Tree-of-Code (ToC), which self-grows CodeProgram nodes based on the executable nature of the code and enables self-supervision in a GT-free scenario. Experimental results on two datasets using ten popular zero-shot LLMs show ToC remarkably boosts accuracy by nearly 20% over CodeAct with less than 1/4 turns. Several LLMs even perform better on one-turn CodeProgram than on multi-turn CodeAct. To further investigate the trade-off between efficacy and efficiency, we test different ToC tree sizes and exploration mechanisms. We also highlight the potential of ToC's end-to-end data generation for supervised and reinforced fine-tuning.
Related papers
- CodeCoR: An LLM-Based Self-Reflective Multi-Agent Framework for Code Generation [10.048098631259876]
Code generation aims to produce code that fulfills requirements written in natural languages automatically.
Large language Models (LLMs) like ChatGPT fail to ensure the syntactic and semantic correctness of the generated code.
We propose CodeCoR, a self-reflective multi-agent framework that evaluates the effectiveness of each agent and their collaborations.
arXiv Detail & Related papers (2025-01-14T03:21:10Z) - Tree-of-Code: A Hybrid Approach for Robust Complex Task Planning and Execution [3.229241113813517]
We propose a novel approach called Tree-of-Code (ToC) to tackle the challenges of complex problem planning and execution with an end-to-end mechanism.
In our framework, each final code execution result is treated as a node in the decision tree, with a breadth-first search strategy employed to explore potential solutions.
arXiv Detail & Related papers (2024-12-18T08:47:17Z) - CodeTree: Agent-guided Tree Search for Code Generation with Large Language Models [106.11371409170818]
Large language models (LLMs) can act as agents with capabilities to self-refine and improve generated code autonomously.
We propose CodeTree, a framework for LLM agents to efficiently explore the search space in different stages of the code generation process.
Specifically, we adopted a unified tree structure to explicitly explore different coding strategies, generate corresponding coding solutions, and subsequently refine the solutions.
arXiv Detail & Related papers (2024-11-07T00:09:54Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
Large Language Models (LLMs) have made tremendous strides in code generation, but existing research fails to account for the dynamic nature of software development.
We propose two novel tasks aimed at bridging this gap: version-specific code completion (VSCC) and version-aware code migration (VACM)
We conduct an extensive evaluation on VersiCode, which reveals that version-controllable code generation is indeed a significant challenge.
arXiv Detail & Related papers (2024-06-11T16:15:06Z) - Comments as Natural Logic Pivots: Improve Code Generation via Comment Perspective [85.48043537327258]
We propose MANGO (comMents As Natural loGic pivOts), including a comment contrastive training strategy and a corresponding logical comment decoding strategy.
Results indicate that MANGO significantly improves the code pass rate based on the strong baselines.
The robustness of the logical comment decoding strategy is notably higher than the Chain-of-thoughts prompting.
arXiv Detail & Related papers (2024-04-11T08:30:46Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - Executable Code Actions Elicit Better LLM Agents [76.95566120678787]
This work proposes to use Python code to consolidate Large Language Model (LLM) agents' actions into a unified action space (CodeAct)
integrated with a Python interpreter, CodeAct can execute code actions and dynamically revise prior actions or emit new actions upon new observations through multi-turn interactions.
The encouraging performance of CodeAct motivates us to build an open-source LLM agent that interacts with environments by executing interpretable code and collaborates with users using natural language.
arXiv Detail & Related papers (2024-02-01T21:38:58Z) - CodeT5+: Open Code Large Language Models for Code Understanding and
Generation [72.1638273937025]
Large language models (LLMs) pretrained on vast source code have achieved prominent progress in code intelligence.
CodeT5+ is a family of encoder-decoder LLMs for code in which component modules can be flexibly combined to suit a wide range of downstream code tasks.
We extensively evaluate CodeT5+ on over 20 code-related benchmarks in different settings, including zero-shot, finetuning, and instruction-tuning.
arXiv Detail & Related papers (2023-05-13T14:23:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.