Music Genre Classification: Ensemble Learning with Subcomponents-level Attention
- URL: http://arxiv.org/abs/2412.15602v1
- Date: Fri, 20 Dec 2024 06:50:31 GMT
- Title: Music Genre Classification: Ensemble Learning with Subcomponents-level Attention
- Authors: Yichen Liu, Abhijit Dasgupta, Qiwei He,
- Abstract summary: Music Genre Classification is one of the most popular topics in the fields of Music Information Retrieval (MIR) and digital signal processing.
This letter introduces a novel approach by combining ensemble learning with attention to sub-components, aiming to enhance the accuracy of identifying music genres.
The proposed method has superior advantages in terms of accuracy compared to the other state-of-the-art techniques trained and tested on the GTZAN dataset.
- Score: 2.553456266022126
- License:
- Abstract: Music Genre Classification is one of the most popular topics in the fields of Music Information Retrieval (MIR) and digital signal processing. Deep Learning has emerged as the top performer for classifying music genres among various methods. The letter introduces a novel approach by combining ensemble learning with attention to sub-components, aiming to enhance the accuracy of identifying music genres. The core innovation of our work is the proposal to classify the subcomponents of the music pieces separately, allowing our model to capture distinct characteristics from those sub components. By applying ensemble learning techniques to these individual classifications, we make the final classification decision on the genre of the music. The proposed method has superior advantages in terms of accuracy compared to the other state-of-the-art techniques trained and tested on the GTZAN dataset.
Related papers
- Attention-guided Spectrogram Sequence Modeling with CNNs for Music Genre Classification [0.0]
We present an innovative model for classifying music genres using attention-based temporal signature modeling.
Our approach captures the most temporally significant moments within each piece, crafting a unique "signature" for genre identification.
This work bridges the gap between technical classification tasks and the nuanced, human experience of genre.
arXiv Detail & Related papers (2024-11-18T21:57:03Z) - Towards Explainable and Interpretable Musical Difficulty Estimation: A Parameter-efficient Approach [49.2787113554916]
Estimating music piece difficulty is important for organizing educational music collections.
Our work employs explainable descriptors for difficulty estimation in symbolic music representations.
Our approach, evaluated in piano repertoire categorized in 9 classes, achieved 41.4% accuracy independently, with a mean squared error (MSE) of 1.7.
arXiv Detail & Related papers (2024-08-01T11:23:42Z) - Music Genre Classification with ResNet and Bi-GRU Using Visual
Spectrograms [4.354842354272412]
The limitations of manual genre classification have highlighted the need for a more advanced system.
Traditional machine learning techniques have shown potential in genre classification, but fail to capture the full complexity of music data.
This study proposes a novel approach using visual spectrograms as input, and propose a hybrid model that combines the strength of the Residual neural Network (ResNet) and the Gated Recurrent Unit (GRU)
arXiv Detail & Related papers (2023-07-20T11:10:06Z) - A Dataset for Greek Traditional and Folk Music: Lyra [69.07390994897443]
This paper presents a dataset for Greek Traditional and Folk music that includes 1570 pieces, summing in around 80 hours of data.
The dataset incorporates YouTube timestamped links for retrieving audio and video, along with rich metadata information with regards to instrumentation, geography and genre.
arXiv Detail & Related papers (2022-11-21T14:15:43Z) - MATT: A Multiple-instance Attention Mechanism for Long-tail Music Genre
Classification [1.8275108630751844]
Imbalanced music genre classification is a crucial task in the Music Information Retrieval (MIR) field.
Most of the existing models are designed for class-balanced music datasets.
We propose a novel mechanism named Multi-instance Attention (MATT) to boost the performance for identifying tail classes.
arXiv Detail & Related papers (2022-09-09T03:52:44Z) - Contrastive Learning with Positive-Negative Frame Mask for Music
Representation [91.44187939465948]
This paper proposes a novel Positive-nEgative frame mask for Music Representation based on the contrastive learning framework, abbreviated as PEMR.
We devise a novel contrastive learning objective to accommodate both self-augmented positives/negatives sampled from the same music.
arXiv Detail & Related papers (2022-03-17T07:11:42Z) - Multi-task Learning with Metadata for Music Mood Classification [0.0]
Mood recognition is an important problem in music informatics and has key applications in music discovery and recommendation.
We propose a multi-task learning approach in which a shared model is simultaneously trained for mood and metadata prediction tasks.
Applying our technique on the existing state-of-the-art convolutional neural networks for mood classification improves their performances consistently.
arXiv Detail & Related papers (2021-10-10T11:36:34Z) - Complex Network-Based Approach for Feature Extraction and Classification
of Musical Genres [0.0]
This work presents a feature extraction method for the automatic classification of musical genres.
The proposed method initially converts the musics into sequences of musical notes and then maps the sequences as complex networks.
Topological measurements are extracted to characterize the network topology, which composes a feature vector that applies to the classification of musical genres.
arXiv Detail & Related papers (2021-10-09T22:23:33Z) - MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training [97.91071692716406]
Symbolic music understanding refers to the understanding of music from the symbolic data.
MusicBERT is a large-scale pre-trained model for music understanding.
arXiv Detail & Related papers (2021-06-10T10:13:05Z) - Music Gesture for Visual Sound Separation [121.36275456396075]
"Music Gesture" is a keypoint-based structured representation to explicitly model the body and finger movements of musicians when they perform music.
We first adopt a context-aware graph network to integrate visual semantic context with body dynamics, and then apply an audio-visual fusion model to associate body movements with the corresponding audio signals.
arXiv Detail & Related papers (2020-04-20T17:53:46Z) - Multi-Modal Music Information Retrieval: Augmenting Audio-Analysis with
Visual Computing for Improved Music Video Analysis [91.3755431537592]
This thesis combines audio-analysis with computer vision to approach Music Information Retrieval (MIR) tasks from a multi-modal perspective.
The main hypothesis of this work is based on the observation that certain expressive categories such as genre or theme can be recognized on the basis of the visual content alone.
The experiments are conducted for three MIR tasks Artist Identification, Music Genre Classification and Cross-Genre Classification.
arXiv Detail & Related papers (2020-02-01T17:57:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.