Learning Group Interactions and Semantic Intentions for Multi-Object Trajectory Prediction
- URL: http://arxiv.org/abs/2412.15673v1
- Date: Fri, 20 Dec 2024 08:38:26 GMT
- Title: Learning Group Interactions and Semantic Intentions for Multi-Object Trajectory Prediction
- Authors: Mengshi Qi, Yuxin Yang, Huadong Ma,
- Abstract summary: We propose a novel diffusion-based trajectory prediction framework that integrates group-level interactions into a conditional diffusion model.
We frame group interaction prediction as a cooperative game, using Banzhaf interaction to model cooperation trends.
Our model outperforms state-of-the-art methods in experiments on three widely-adopted datasets.
- Score: 25.83048268738363
- License:
- Abstract: Effective modeling of group interactions and dynamic semantic intentions is crucial for forecasting behaviors like trajectories or movements. In complex scenarios like sports, agents' trajectories are influenced by group interactions and intentions, including team strategies and opponent actions. To this end, we propose a novel diffusion-based trajectory prediction framework that integrates group-level interactions into a conditional diffusion model, enabling the generation of diverse trajectories aligned with specific group activity. To capture dynamic semantic intentions, we frame group interaction prediction as a cooperative game, using Banzhaf interaction to model cooperation trends. We then fuse semantic intentions with enhanced agent embeddings, which are refined through both global and local aggregation. Furthermore, we expand the NBA SportVU dataset by adding human annotations of team-level tactics for trajectory and tactic prediction tasks. Extensive experiments on three widely-adopted datasets demonstrate that our model outperforms state-of-the-art methods. Our source code and data are available at https://github.com/aurora-xin/Group2Int-trajectory.
Related papers
- Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - SSL-Interactions: Pretext Tasks for Interactive Trajectory Prediction [4.286256266868156]
We present SSL-Interactions that proposes pretext tasks to enhance interaction modeling for trajectory prediction.
We introduce four interaction-aware pretext tasks to encapsulate various aspects of agent interactions.
We also propose an approach to curate interaction-heavy scenarios from datasets.
arXiv Detail & Related papers (2024-01-15T14:43:40Z) - Rethinking Trajectory Prediction via "Team Game" [118.59480535826094]
We present a novel formulation for multi-agent trajectory prediction, which explicitly introduces the concept of interactive group consensus.
On two multi-agent settings, i.e. team sports and pedestrians, the proposed framework consistently achieves superior performance compared to existing methods.
arXiv Detail & Related papers (2022-10-17T07:16:44Z) - Dynamic-Group-Aware Networks for Multi-Agent Trajectory Prediction with
Relational Reasoning [29.294244001911242]
We propose DynGroupNet, a dynamic-group-aware network, which can model time-varying interactions in highly dynamic scenes.
Based on DynGroupNet, we design a prediction system to forecast socially plausible trajectories with dynamic relational reasoning.
arXiv Detail & Related papers (2022-06-27T08:36:56Z) - GroupNet: Multiscale Hypergraph Neural Networks for Trajectory
Prediction with Relational Reasoning [37.64048110462638]
GroupNet is a multiscale hypergraph neural network that captures both pair-wise and group-wise interactions.
We apply GroupNet into both CVAE-based prediction system and previous state-of-the-art prediction systems.
We show that with GroupNet, the CVAE-based prediction system outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-04-19T09:36:20Z) - Deep Interactive Motion Prediction and Planning: Playing Games with
Motion Prediction Models [162.21629604674388]
This work presents a game-theoretic Model Predictive Controller (MPC) that uses a novel interactive multi-agent neural network policy as part of its predictive model.
Fundamental to the success of our method is the design of a novel multi-agent policy network that can steer a vehicle given the state of the surrounding agents and the map information.
arXiv Detail & Related papers (2022-04-05T17:58:18Z) - Unlimited Neighborhood Interaction for Heterogeneous Trajectory
Prediction [97.40338982628094]
We propose a simple yet effective Unlimited Neighborhood Interaction Network (UNIN) which predicts trajectories of heterogeneous agents in multiply categories.
Specifically, the proposed unlimited neighborhood interaction module generates the fused-features of all agents involved in an interaction simultaneously.
A hierarchical graph attention module is proposed to obtain category-tocategory interaction and agent-to-agent interaction.
arXiv Detail & Related papers (2021-07-31T13:36:04Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - HGCN-GJS: Hierarchical Graph Convolutional Network with Groupwise Joint
Sampling for Trajectory Prediction [14.57655217378212]
In this work, we propose a hierarchical graph convolutional network, HGCN-GJS, for trajectory prediction.
We introduce a novel joint sampling scheme for modeling the joint distribution of multiple pedestrians in the future trajectories.
We demonstrate the performance of our network on several trajectory prediction datasets, achieving state-of-the-art results on all datasets considered.
arXiv Detail & Related papers (2020-09-15T14:51:10Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.