Prompt-based Unifying Inference Attack on Graph Neural Networks
- URL: http://arxiv.org/abs/2412.15735v1
- Date: Fri, 20 Dec 2024 09:56:17 GMT
- Title: Prompt-based Unifying Inference Attack on Graph Neural Networks
- Authors: Yuecen Wei, Xingcheng Fu, Lingyun Liu, Qingyun Sun, Hao Peng, Chunming Hu,
- Abstract summary: We propose a novel Prompt-based unifying Inference Attack framework on Graph neural networks (GNNs)
ProIA retains the crucial topological information of the graph during pre-training, enhancing the background knowledge of the inference attack model.
It then utilizes a unified prompt and introduces additional disentanglement factors in downstream attacks to adapt to task-relevant knowledge.
- Score: 24.85661326294946
- License:
- Abstract: Graph neural networks (GNNs) provide important prospective insights in applications such as social behavior analysis and financial risk analysis based on their powerful learning capabilities on graph data. Nevertheless, GNNs' predictive performance relies on the quality of task-specific node labels, so it is common practice to improve the model's generalization ability in the downstream execution of decision-making tasks through pre-training. Graph prompting is a prudent choice but risky without taking measures to prevent data leakage. In other words, in high-risk decision scenarios, prompt learning can infer private information by accessing model parameters trained on private data (publishing model parameters in pre-training, i.e., without directly leaking the raw data, is a tacitly accepted trend). However, myriad graph inference attacks necessitate tailored module design and processing to enhance inference capabilities due to variations in supervision signals. In this paper, we propose a novel Prompt-based unifying Inference Attack framework on GNNs, named ProIA. Specifically, ProIA retains the crucial topological information of the graph during pre-training, enhancing the background knowledge of the inference attack model. It then utilizes a unified prompt and introduces additional disentanglement factors in downstream attacks to adapt to task-relevant knowledge. Finally, extensive experiments show that ProIA enhances attack capabilities and demonstrates remarkable adaptability to various inference attacks.
Related papers
- Provable Robustness of (Graph) Neural Networks Against Data Poisoning and Backdoor Attacks [50.87615167799367]
We certify Graph Neural Networks (GNNs) against poisoning attacks, including backdoors, targeting the node features of a given graph.
Our framework provides fundamental insights into the role of graph structure and its connectivity on the worst-case behavior of convolution-based and PageRank-based GNNs.
arXiv Detail & Related papers (2024-07-15T16:12:51Z) - GCON: Differentially Private Graph Convolutional Network via Objective Perturbation [27.279817693305183]
Graph Convolutional Networks (GCNs) are a popular machine learning model with a wide range of applications in graph analytics.
GCNs trained without privacy protection measures may memorize private interpersonal relationships in the training data.
This poses a substantial risk of compromising privacy through link attacks, potentially leading to violations of privacy regulations such as as.
We propose GCON, a novel and effective solution for training GCNs with edge differential privacy.
arXiv Detail & Related papers (2024-07-06T09:59:56Z) - P3GNN: A Privacy-Preserving Provenance Graph-Based Model for APT Detection in Software Defined Networking [25.181087776375914]
This paper presents P3GNN (privacy-preserving provenance graph-based graph neural network model), a novel model that synergizes Federated Learning (FL) with Graph Convolutional Networks (GCN)
P3GNN utilizes unsupervised learning to analyze operational patterns within provenance graphs, identifying deviations indicative of security breaches.
Key innovations of P3GNN include its ability to detect anomalies at the node level within provenance graphs, offering a detailed view of attack trajectories and enhancing security analysis.
arXiv Detail & Related papers (2024-06-17T18:14:03Z) - Graph Transductive Defense: a Two-Stage Defense for Graph Membership Inference Attacks [50.19590901147213]
Graph neural networks (GNNs) have become instrumental in diverse real-world applications, offering powerful graph learning capabilities.
GNNs are vulnerable to adversarial attacks, including membership inference attacks (MIA)
This paper proposes an effective two-stage defense, Graph Transductive Defense (GTD), tailored to graph transductive learning characteristics.
arXiv Detail & Related papers (2024-06-12T06:36:37Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
We study model inversion attacks against Graph Neural Networks (GNNs)
In this paper, we present GraphMI to infer the private training graph data.
Our experimental results show that such defenses are not sufficiently effective and call for more advanced defenses against privacy attacks.
arXiv Detail & Related papers (2022-09-16T09:13:43Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.