Millikelvin Nb nanoSQUID-embedded tuneable resonator fabricated with a neon focused-ion-beam
- URL: http://arxiv.org/abs/2412.16045v2
- Date: Fri, 03 Jan 2025 14:06:32 GMT
- Title: Millikelvin Nb nanoSQUID-embedded tuneable resonator fabricated with a neon focused-ion-beam
- Authors: Jamie A. Potter, Laith Meti, Gemma Chapman, Ed Romans, John Gallop, Ling Hao,
- Abstract summary: We present a monolithic Nb nanoSQUID-embedded resonator, where neon focused-ion-beam fabrication of the nanoSQUID results in a device displaying frequency tuneability at $T = 16$ mK.
In order to assess the applicability of the device for coupling to small spin clusters, we characterise the flux sensitivity as a function of microwave drive power and externally applied magnetic field.
We discuss improvements to the device design which can dramatically improve the flux sensitivity, which highlights the promise of Nb SQUID-embedded resonators for hybrid superconductor-spin applications.
- Score: 0.0
- License:
- Abstract: SQUID-embedded superconducting resonators are of great interest due to their potential for coupling highly scalable superconducting circuits with quantum memories based on solid-state spin ensembles. Such an application requires a high-$Q$, frequency-tuneable resonator which is both resilient to magnetic field, and able to operate at millikelvin temperatures. These requirements motivate the use of a higher $H_{c}$ metal such as niobium, however the challenge then becomes to sufficiently reduce the operating temperature. We address this by presenting a monolithic Nb nanoSQUID-embedded resonator, where neon focused-ion-beam fabrication of the nanoSQUID results in a device displaying frequency tuneability at $T = 16$ mK. In order to assess the applicability of the device for coupling to small spin clusters, we characterise the flux sensitivity as a function of microwave drive power and externally applied magnetic field, and find that the noise is dominated by dielectric noise in the resonator. Finally, we discuss improvements to the device design which can dramatically improve the flux sensitivity, which highlights the promise of Nb SQUID-embedded resonators for hybrid superconductor-spin applications.
Related papers
- A spin-refrigerated cavity quantum electrodynamic sensor [1.6713959634020665]
Quantum sensors based on solid-state defects, in particular nitrogen-vacancy centers in diamond, enable precise measurement of magnetic fields, temperature, rotation, and electric fields.
We introduce a cavity quantum electrodynamic (cQED) hybrid system operating in the strong coupling regime, which enables high readout fidelity of an NV ensemble.
We demonstrate a broadband sensitivity of 580 fT/$sqrtmathrmHz$ around 15 kHz in ambient conditions.
arXiv Detail & Related papers (2024-04-16T14:56:50Z) - Low loss hybrid Nb/Au superconducting resonators for quantum circuit applications [0.0]
We study a superconducting device combining a 100 nm niobium (Nb) circuit with a 10 nm gold (Au) capping layer.
Our investigation covers a wide range of temperatures and driving powers, revealing that adding the Au layer reduces the density of two-level system defects.
Our findings suggest the potential of Nb/Au lumped element resonators as versatile and promising tools for advancing superconducting quantum technologies.
arXiv Detail & Related papers (2024-01-26T10:40:51Z) - Junction-free microwave two-mode radiation from a kinetic inductance
nanowire [0.3413711585591077]
We show the generation of two-mode squeezed states via four-wave-mixing in a superconducting nanowire resonator patterned from NbN.
Our microwave parametric sources based on kinetic inductance promise an expanded range of potential applications.
arXiv Detail & Related papers (2023-08-04T02:10:44Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Characterizing Niobium Nitride Superconducting Microwave Coplanar
Waveguide Resonator Array for Circuit Quantum Electrodynamics in Extreme
Conditions [1.2627743222524832]
Niobium nitride (NbN) is a promising material for applications in superconducting quantum technology.
NbN-based devices and circuits are sensitive to decoherence sources such as two-level system (TLS) defects.
We numerically and experimentally investigate NbN superconducting microwave coplanar waveguide resonator arrays.
arXiv Detail & Related papers (2023-06-04T13:24:51Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Ultra-High Q Nanomechanical Resonators for Force Sensing [91.3755431537592]
I propose that such resonators will allow the detection of electron and nuclear spins with high spatial resolution.
The article lists the challenges that must be overcome before this vision can become reality, and indicates potential solutions.
arXiv Detail & Related papers (2022-09-12T12:21:00Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Flopping-mode electric dipole spin resonance in phosphorus donor qubits
in silicon [0.0]
Single spin qubits based on phosphorus donors in silicon are a promising candidate for a large-scale quantum computer.
We present a proposal for a flopping-mode electric dipole spin resonance qubit based on the combined electron and nuclear spin states of a double phosphorus donor quantum dot.
arXiv Detail & Related papers (2021-05-06T18:11:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.