Generalizable Representation Learning for fMRI-based Neurological Disorder Identification
- URL: http://arxiv.org/abs/2412.16197v1
- Date: Mon, 16 Dec 2024 22:07:35 GMT
- Title: Generalizable Representation Learning for fMRI-based Neurological Disorder Identification
- Authors: Wenhui Cui, Haleh Akrami, Anand A. Joshi, Richard M. Leahy,
- Abstract summary: We introduce a novel representation learning strategy to improve the generalization from normal to clinical features.
This approach enables generalization to challenging clinical tasks featuring scarce training data.
Results demonstrate the superiority of our representation learning strategy on diverse clinically-relevant tasks.
- Score: 0.0
- License:
- Abstract: Despite the impressive advances achieved using deep learning for functional brain activity analysis, the heterogeneity of functional patterns and the scarcity of imaging data still pose challenges in tasks such as identifying neurological disorders. For functional Magnetic Resonance Imaging (fMRI), while data may be abundantly available from healthy controls, clinical data is often scarce, especially for rare diseases, limiting the ability of models to identify clinically-relevant features. We overcome this limitation by introducing a novel representation learning strategy integrating meta-learning with self-supervised learning to improve the generalization from normal to clinical features. This approach enables generalization to challenging clinical tasks featuring scarce training data. We achieve this by leveraging self-supervised learning on the control dataset to focus on inherent features that are not limited to a particular supervised task and incorporating meta-learning to improve the generalization across domains. To explore the generalizability of the learned representations to unseen clinical applications, we apply the model to four distinct clinical datasets featuring scarce and heterogeneous data for neurological disorder classification. Results demonstrate the superiority of our representation learning strategy on diverse clinically-relevant tasks.
Related papers
- Generative forecasting of brain activity enhances Alzheimer's classification and interpretation [16.09844316281377]
Resting-state functional magnetic resonance imaging (rs-fMRI) offers a non-invasive method to monitor neural activity.
Deep learning has shown promise in capturing these representations.
In this study, we focus on time series forecasting of independent component networks derived from rs-fMRI as a form of data augmentation.
arXiv Detail & Related papers (2024-10-30T23:51:31Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - Meta Transfer of Self-Supervised Knowledge: Foundation Model in Action
for Post-Traumatic Epilepsy Prediction [0.6291443816903801]
We introduce a novel training strategy for our foundation model.
We demonstrate that the proposed strategy significantly improves task performance on small-scale clinical datasets.
Results further demonstrated the enhanced generalizability of our foundation model.
arXiv Detail & Related papers (2023-12-21T07:42:49Z) - Language Model Training Paradigms for Clinical Feature Embeddings [1.4513150969598638]
We use self-supervised training paradigms for language models to learn high-quality clinical feature embeddings.
We visualize the learnt embeddings via unsupervised dimension reduction techniques and observe a high degree of consistency with prior clinical knowledge.
arXiv Detail & Related papers (2023-11-01T18:23:12Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Self-supervised multimodal neuroimaging yields predictive
representations for a spectrum of Alzheimer's phenotypes [27.331511924585023]
This work presents a novel multi-scale coordinated framework for learning multiple representations from multimodal neuroimaging data.
We propose a general taxonomy of informative inductive biases to capture unique and joint information in multimodal self-supervised fusion.
We show that self-supervised models reveal disorder-relevant brain regions and multimodal links without access to the labels during pre-training.
arXiv Detail & Related papers (2022-09-07T01:37:19Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCy is a semi-supervised learning (FSSL) method that combines FL and self-supervised learning to exploit a decentralized dataset of both labeled and unlabeled videos.
We demonstrate significant performance gains over state-of-the-art FSSL methods on the task of automatic recognition of surgical phases.
arXiv Detail & Related papers (2022-03-14T17:44:53Z) - Facial Anatomical Landmark Detection using Regularized Transfer Learning
with Application to Fetal Alcohol Syndrome Recognition [24.27777060287004]
Fetal alcohol syndrome (FAS) caused by prenatal alcohol exposure can result in a series of cranio-facial anomalies.
Anatomical landmark detection is important to detect the presence of FAS associated facial anomalies.
Current deep learning-based heatmap regression methods designed for facial landmark detection in natural images assume availability of large datasets.
We develop a new regularized transfer learning approach that exploits the knowledge of a network learned on large facial recognition datasets.
arXiv Detail & Related papers (2021-09-12T11:05:06Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.