VirusT5: Harnessing Large Language Models to Predicting SARS-CoV-2 Evolution
- URL: http://arxiv.org/abs/2412.16262v1
- Date: Fri, 20 Dec 2024 08:46:42 GMT
- Title: VirusT5: Harnessing Large Language Models to Predicting SARS-CoV-2 Evolution
- Authors: Vishwajeet Marathe, Deewan Bajracharya, Changhui Yan,
- Abstract summary: We harnessed the power of Large Language Models to predict the evolution of SARS-CoV-2.
We trained a transformer model, called VirusT5, to capture the mutation patterns underlying SARS-CoV-2 evolution.
- Score: 0.0
- License:
- Abstract: During a virus's evolution,various regions of the genome are subjected to distinct levels of functional constraints.Combined with factors like codon bias and DNA repair efficiency,these constraints contribute to unique mutation patterns within the genome or a specific gene. In this project, we harnessed the power of Large Language Models(LLMs) to predict the evolution of SARS-CoV-2. By treating the mutation process from one generation to the next as a translation task, we trained a transformer model, called VirusT5, to capture the mutation patterns underlying SARS-CoV-2 evolution. We evaluated the VirusT5's ability to detect these mutation patterns including its ability to identify mutation hotspots and explored the potential of using VirusT5 to predict future virus variants. Our findings demonstrate the feasibility of using a large language model to model viral evolution as a translation process. This study establishes the groundbreaking concept of "mutation-as-translation," paving the way for new methodologies and tools for combating virus threats
Related papers
- Explainable convolutional neural network model provides an alternative genome-wide association perspective on mutations in SARS-CoV-2 [12.507142100136464]
We trained a CNN classification model that can predict genomic sequences into Variants of Concern (VOCs)
For comparison, we performed traditional genome-wide association study (GWAS) to identify mutations associated with VOCs.
Our results suggest that explainable neural networks for genomic sequences offer a promising alternative to the traditional genome wide analysis approaches.
arXiv Detail & Related papers (2024-10-29T18:35:40Z) - Opponent Shaping for Antibody Development [49.26728828005039]
Anti-viral therapies are typically designed to target only the current strains of a virus.
therapy-induced selective pressures act on viruses to drive the emergence of mutated strains, against which initial therapies have reduced efficacy.
We build on a computational model of binding between antibodies and viral antigens to implement a genetic simulation of viral evolutionary escape.
arXiv Detail & Related papers (2024-09-16T14:56:27Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
We develop a Biological-knowledge enhanced PathGenomic multi-label Transformer to improve genetic mutation prediction performances.
BPGT first establishes a novel gene encoder that constructs gene priors by two carefully designed modules.
BPGT then designs a label decoder that finally performs genetic mutation prediction by two tailored modules.
arXiv Detail & Related papers (2024-06-05T06:42:27Z) - Learning to Predict Mutation Effects of Protein-Protein Interactions by Microenvironment-aware Hierarchical Prompt Learning [78.38442423223832]
We develop a novel codebook pre-training task, namely masked microenvironment modeling.
We demonstrate superior performance and training efficiency over state-of-the-art pre-training-based methods in mutation effect prediction.
arXiv Detail & Related papers (2024-05-16T03:53:21Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - Predicting loss-of-function impact of genetic mutations: a machine
learning approach [0.0]
This paper aims to train machine learning models on the attributes of a genetic mutation to predict LoFtool scores.
These attributes included, but were not limited to, the position of a mutation on a chromosome, changes in amino acids, and changes in codons caused by the mutation.
Models were evaluated using five-fold cross-validated averages of r-squared, mean squared error, root mean squared error, mean absolute error, and explained variance.
arXiv Detail & Related papers (2024-01-26T19:27:38Z) - PhyloTransformer: A Discriminative Model for Mutation Prediction Based
on a Multi-head Self-attention Mechanism [10.468453827172477]
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an ongoing pandemic infecting 219 million people as of 10/19/21, with a 3.6% mortality rate.
Here we developed PhyloTransformer, a Transformer-based discriminative model that engages a multi-head self-attention mechanism to model genetic mutations that may lead to viral reproductive advantage.
arXiv Detail & Related papers (2021-11-03T01:30:57Z) - Effective and scalable clustering of SARS-CoV-2 sequences [0.41998444721319206]
SARS-CoV-2 continues to mutate as it spreads, according to an evolutionary process.
The number of currently available sequences of SARS-CoV-2 in public databases such as GISAID is already several million.
We propose an approach based on clustering sequences to identify the current major SARS-CoV-2 variants.
arXiv Detail & Related papers (2021-08-18T13:32:43Z) - A k-mer Based Approach for SARS-CoV-2 Variant Identification [55.78588835407174]
We show that preserving the order of the amino acids helps the underlying classifiers to achieve better performance.
We also show the importance of the different amino acids which play a key role in identifying variants and how they coincide with those reported by the USA's Centers for Disease Control and Prevention (CDC)
arXiv Detail & Related papers (2021-08-07T15:08:15Z) - Epigenetic evolution of deep convolutional models [81.21462458089142]
We build upon a previously proposed neuroevolution framework to evolve deep convolutional models.
We propose a convolutional layer layout which allows kernels of different shapes and sizes to coexist within the same layer.
The proposed layout enables the size and shape of individual kernels within a convolutional layer to be evolved with a corresponding new mutation operator.
arXiv Detail & Related papers (2021-04-12T12:45:16Z) - MutaGAN: A Seq2seq GAN Framework to Predict Mutations of Evolving
Protein Populations [0.0]
Influenza virus sequences were identified as an ideal test case for this deep learning framework.
MutaGAN generated "child" sequences from a given "parent" protein sequence with a median Levenshtein distance of 2.00 amino acids.
Results demonstrate the power of the MutaGAN framework to aid in pathogen forecasting with implications for broad utility in evolutionary prediction for any protein population.
arXiv Detail & Related papers (2020-08-26T20:20:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.