Improving Equity in Health Modeling with GPT4-Turbo Generated Synthetic Data: A Comparative Study
- URL: http://arxiv.org/abs/2412.16335v1
- Date: Fri, 20 Dec 2024 20:49:17 GMT
- Title: Improving Equity in Health Modeling with GPT4-Turbo Generated Synthetic Data: A Comparative Study
- Authors: Daniel Smolyak, Arshana Welivita, Margrét V. Bjarnadóttir, Ritu Agarwal,
- Abstract summary: Demographic groups are often represented at different rates in medical datasets.
These differences can create bias in machine learning algorithms, with higher levels of performance for better-represented groups.
One promising solution is to generate synthetic data to mitigate potential adverse effects of non-representative data sets.
- Score: 1.85743121594882
- License:
- Abstract: Objective. Demographic groups are often represented at different rates in medical datasets. These differences can create bias in machine learning algorithms, with higher levels of performance for better-represented groups. One promising solution to this problem is to generate synthetic data to mitigate potential adverse effects of non-representative data sets. Methods. We build on recent advances in LLM-based synthetic data generation to create a pipeline where the synthetic data is generated separately for each demographic group. We conduct our study using MIMIC-IV and Framingham "Offspring and OMNI-1 Cohorts" datasets. We prompt GPT4-Turbo to create group-specific data, providing training examples and the dataset context. An exploratory analysis is conducted to ascertain the quality of the generated data. We then evaluate the utility of the synthetic data for augmentation of a training dataset in a downstream machine learning task, focusing specifically on model performance metrics across groups. Results. The performance of GPT4-Turbo augmentation is generally superior but not always. In the majority of experiments our method outperforms standard modeling baselines, however, prompting GPT-4-Turbo to produce data specific to a group provides little to no additional benefit over a prompt that does not specify the group. Conclusion. We developed a method for using LLMs out-of-the-box to synthesize group-specific data to address imbalances in demographic representation in medical datasets. As another "tool in the toolbox", this method can improve model fairness and thus health equity. More research is needed to understand the conditions under which LLM generated synthetic data is useful for non-representative medical data sets.
Related papers
- Evaluating Language Models as Synthetic Data Generators [74.80905172696366]
AgoraBench is a benchmark that provides standardized settings and metrics to evaluate LMs' data generation abilities.
Through synthesizing 1.26 million training instances using 6 LMs and training 99 student models, we uncover key insights about LMs' data generation capabilities.
arXiv Detail & Related papers (2024-12-04T19:20:32Z) - Synthetic ECG Generation for Data Augmentation and Transfer Learning in Arrhythmia Classification [1.7614607439356635]
We explore the usefulness of synthetic data generated with different generative models from Deep Learning.
We investigate the effects of transfer learning, by fine-tuning a synthetically pre-trained model and then adding increasing proportions of real data.
arXiv Detail & Related papers (2024-11-27T15:46:34Z) - Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - On the Diversity of Synthetic Data and its Impact on Training Large Language Models [34.00031258223175]
Large Language Models (LLMs) have accentuated the need for diverse, high-quality pre-training data.
Synthetic data emerges as a viable solution to the challenges of data scarcity and inaccessibility.
We study the downstream effects of synthetic data diversity during both the pre-training and fine-tuning stages.
arXiv Detail & Related papers (2024-10-19T22:14:07Z) - Artificial Data Point Generation in Clustered Latent Space for Small
Medical Datasets [4.542616945567623]
This paper introduces a novel method, Artificial Data Point Generation in Clustered Latent Space (AGCL)
AGCL is designed to enhance classification performance on small medical datasets through synthetic data generation.
It was applied to Parkinson's disease screening, utilizing facial expression data.
arXiv Detail & Related papers (2024-09-26T09:51:08Z) - Efficacy of Synthetic Data as a Benchmark [3.2968976262860408]
We investigate the effectiveness of generating synthetic data through large language models (LLMs)
Our experiments show that while synthetic data can effectively capture performance of various methods for simpler tasks, it falls short for more complex tasks like named entity recognition.
We propose a new metric called the bias factor, which evaluates the biases introduced when the same LLM is used to both generate benchmarking data and to perform the tasks.
arXiv Detail & Related papers (2024-09-18T13:20:23Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
We find that model performance is negatively correlated to the compression ratio of training data, which usually yields a lower training loss.
Based on the findings of the entropy law, we propose a quite efficient and universal data selection method.
We also present an interesting application of entropy law that can detect potential performance risks at the beginning of model training.
arXiv Detail & Related papers (2024-07-09T08:14:29Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Regularizing Neural Networks with Meta-Learning Generative Models [40.45689466486025]
We present a novel strategy for generative data augmentation called meta generative regularization (MGR)
MGR utilizes synthetic samples in the regularization term for feature extractors instead of in the loss function, e.g., cross-entropy.
Experiments on six datasets showed that MGR is effective particularly when datasets are smaller and stably outperforms baselines.
arXiv Detail & Related papers (2023-07-26T01:47:49Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - Data-IQ: Characterizing subgroups with heterogeneous outcomes in tabular
data [81.43750358586072]
We propose Data-IQ, a framework to systematically stratify examples into subgroups with respect to their outcomes.
We experimentally demonstrate the benefits of Data-IQ on four real-world medical datasets.
arXiv Detail & Related papers (2022-10-24T08:57:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.