Robust random graph matching in dense graphs via vector approximate message passing
- URL: http://arxiv.org/abs/2412.16457v1
- Date: Sat, 21 Dec 2024 03:15:38 GMT
- Title: Robust random graph matching in dense graphs via vector approximate message passing
- Authors: Zhangsong Li,
- Abstract summary: We focus on the matching recovery problem between a pair of correlated Gaussian Wigner matrices with a latent correspondence.
Our algorithm is the first efficient random graph matching type algorithm that is robust under any adversarial perturbations of $n1-o(1)$ size.
- Score: 0.0
- License:
- Abstract: In this paper, we focus on the matching recovery problem between a pair of correlated Gaussian Wigner matrices with a latent vertex correspondence. We are particularly interested in a robust version of this problem such that our observation is a perturbed input $(A+E,B+F)$ where $(A,B)$ is a pair of correlated Gaussian Wigner matrices and $E,F$ are adversarially chosen matrices supported on an unknown $\epsilon n * \epsilon n$ principle minor of $A,B$, respectively. We propose a vector-approximate message passing (vector-AMP) algorithm that succeeds in polynomial time as long as the correlation $\rho$ between $(A,B)$ is a non-vanishing constant and $\epsilon = o\big( \tfrac{1}{(\log n)^{20}} \big)$. The main methodological inputs for our result are the iterative random graph matching algorithm proposed in \cite{DL22+, DL23+} and the spectral cleaning procedure proposed in \cite{IS24+}. To the best of our knowledge, our algorithm is the first efficient random graph matching type algorithm that is robust under any adversarial perturbations of $n^{1-o(1)}$ size.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - A Near-Linear Time Approximation Algorithm for Beyond-Worst-Case Graph Clustering [18.29151197560866]
We consider the semi-random graph model of [Makarychev, Makarychev and Vijayaraghavan, STOC'12].
A time algorithm is known to approximate the Balanced Cut problem up to value $O(alpha)$ [MMV'12] as long as the cut $(A, B)$ has size $Omega(alpha)$.
We study the fine-grained complexity of the problem and present the first near-linear time subroutine that achieves similar performances to that of [MMV'12].
arXiv Detail & Related papers (2024-06-07T11:40:54Z) - The Umeyama algorithm for matching correlated Gaussian geometric models
in the low-dimensional regime [0.0]
Motivated by the problem of matching two correlated random geometric graphs, we study the problem of matching two Gaussian geometric models correlated through a latent node permutation.
We consider two types of (correlated) weighted complete graphs with edge weights given by $A_i,j=langle X_i,X_j rangle$, $B_i,j=langle Y_i,Y_j rangle$.
arXiv Detail & Related papers (2024-02-23T04:58:54Z) - Solving Dense Linear Systems Faster Than via Preconditioning [1.8854491183340518]
We show that our algorithm has an $tilde O(n2)$ when $k=O(n0.729)$.
In particular, our algorithm has an $tilde O(n2)$ when $k=O(n0.729)$.
Our main algorithm can be viewed as a randomized block coordinate descent method.
arXiv Detail & Related papers (2023-12-14T12:53:34Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
We give a sketching-based iterative algorithm that computes $1+varepsilon$ approximate solutions for the ridge regression problem.
We also show that this algorithm can be used to give faster algorithms for kernel ridge regression.
arXiv Detail & Related papers (2022-04-13T22:18:47Z) - Fast Graph Sampling for Short Video Summarization using Gershgorin Disc
Alignment [52.577757919003844]
We study the problem of efficiently summarizing a short video into several paragraphs, leveraging recent progress in fast graph sampling.
Experimental results show that our algorithm achieves comparable video summarization as state-of-the-art methods, at a substantially reduced complexity.
arXiv Detail & Related papers (2021-10-21T18:43:00Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.