Text2midi: Generating Symbolic Music from Captions
- URL: http://arxiv.org/abs/2412.16526v2
- Date: Tue, 31 Dec 2024 07:56:59 GMT
- Title: Text2midi: Generating Symbolic Music from Captions
- Authors: Keshav Bhandari, Abhinaba Roy, Kyra Wang, Geeta Puri, Simon Colton, Dorien Herremans,
- Abstract summary: This paper introduces text2midi, an end-to-end model to generate MIDI files from textual descriptions.
We utilize a pretrained LLM encoder to process captions, which then condition an autoregressive transformer decoder to produce MIDI sequences.
We conduct comprehensive empirical evaluations, incorporating both automated and human studies, that show our model generates MIDI files of high quality.
- Score: 7.133321587053803
- License:
- Abstract: This paper introduces text2midi, an end-to-end model to generate MIDI files from textual descriptions. Leveraging the growing popularity of multimodal generative approaches, text2midi capitalizes on the extensive availability of textual data and the success of large language models (LLMs). Our end-to-end system harnesses the power of LLMs to generate symbolic music in the form of MIDI files. Specifically, we utilize a pretrained LLM encoder to process captions, which then condition an autoregressive transformer decoder to produce MIDI sequences that accurately reflect the provided descriptions. This intuitive and user-friendly method significantly streamlines the music creation process by allowing users to generate music pieces using text prompts. We conduct comprehensive empirical evaluations, incorporating both automated and human studies, that show our model generates MIDI files of high quality that are indeed controllable by text captions that may include music theory terms such as chords, keys, and tempo. We release the code and music samples on our demo page (https://github.com/AMAAI-Lab/Text2midi) for users to interact with text2midi.
Related papers
- SongGen: A Single Stage Auto-regressive Transformer for Text-to-Song Generation [75.86473375730392]
SongGen is a fully open-source, single-stage auto-regressive transformer for controllable song generation.
It supports two output modes: mixed mode, which generates a mixture of vocals and accompaniment directly, and dual-track mode, which synthesizes them separately.
To foster community engagement and future research, we will release our model weights, training code, annotated data, and preprocessing pipeline.
arXiv Detail & Related papers (2025-02-18T18:52:21Z) - MusiConGen: Rhythm and Chord Control for Transformer-Based Text-to-Music Generation [19.878013881045817]
MusiConGen is a temporally-conditioned Transformer-based text-to-music model.
It integrates automatically-extracted rhythm and chords as the condition signal.
We show that MusiConGen can generate realistic backing track music that aligns well with the specified conditions.
arXiv Detail & Related papers (2024-07-21T05:27:53Z) - Accompanied Singing Voice Synthesis with Fully Text-controlled Melody [61.147446955297625]
Text-to-song (TTSong) is a music generation task that synthesizes accompanied singing voices.
We present MelodyLM, the first TTSong model that generates high-quality song pieces with fully text-controlled melodies.
arXiv Detail & Related papers (2024-07-02T08:23:38Z) - MidiCaps: A large-scale MIDI dataset with text captions [6.806050368211496]
This work aims to enable research that combines LLMs with symbolic music by presenting, the first openly available large-scale MIDI dataset with text captions.
Inspired by recent advancements in captioning techniques, we present a curated dataset of over 168k MIDI files with textual descriptions.
arXiv Detail & Related papers (2024-06-04T12:21:55Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
We explore the application of Large Language Models (LLMs) to the pre-training of music.
To address the challenges associated with misaligned measures from different tracks during generation, we propose a Synchronized Multi-Track ABC Notation (SMT-ABC Notation)
Our contributions include a series of models capable of handling up to 8192 tokens, covering 90% of the symbolic music data in our training set.
arXiv Detail & Related papers (2024-04-09T15:35:52Z) - miditok: A Python package for MIDI file tokenization [0.0]
MidiTok is an open-source library allowing to tokenize symbolic music.
It features the most popular music tokenizations, under a unified API.
arXiv Detail & Related papers (2023-10-26T07:37:44Z) - Simple and Controllable Music Generation [94.61958781346176]
MusicGen is a single Language Model (LM) that operates over several streams of compressed discrete music representation, i.e., tokens.
Unlike prior work, MusicGen is comprised of a single-stage transformer LM together with efficient token interleaving patterns.
arXiv Detail & Related papers (2023-06-08T15:31:05Z) - Noise2Music: Text-conditioned Music Generation with Diffusion Models [73.74580231353684]
We introduce Noise2Music, where a series of diffusion models is trained to generate high-quality 30-second music clips from text prompts.
We find that the generated audio is not only able to faithfully reflect key elements of the text prompt such as genre, tempo, instruments, mood, and era.
Pretrained large language models play a key role in this story -- they are used to generate paired text for the audio of the training set and to extract embeddings of the text prompts ingested by the diffusion models.
arXiv Detail & Related papers (2023-02-08T07:27:27Z) - Foley Music: Learning to Generate Music from Videos [115.41099127291216]
Foley Music is a system that can synthesize plausible music for a silent video clip about people playing musical instruments.
We first identify two key intermediate representations for a successful video to music generator: body keypoints from videos and MIDI events from audio recordings.
We present a Graph$-$Transformer framework that can accurately predict MIDI event sequences in accordance with the body movements.
arXiv Detail & Related papers (2020-07-21T17:59:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.