Learning for Cross-Layer Resource Allocation in MEC-Aided Cell-Free Networks
- URL: http://arxiv.org/abs/2412.16565v1
- Date: Sat, 21 Dec 2024 10:18:55 GMT
- Title: Learning for Cross-Layer Resource Allocation in MEC-Aided Cell-Free Networks
- Authors: Chong Zheng, Shiwen He, Yongming Huang, Tony Q. S. Quek,
- Abstract summary: Cross-layer resource allocation over mobile edge computing (MEC)-aided cell-free networks can sufficiently exploit the transmitting and computing resources to promote the data rate.
Joint subcarrier allocation and beamforming optimization are investigated for the MEC-aided cell-free network from the perspective of deep learning.
- Score: 71.30914500714262
- License:
- Abstract: Cross-layer resource allocation over mobile edge computing (MEC)-aided cell-free networks can sufficiently exploit the transmitting and computing resources to promote the data rate. However, the technical bottlenecks of traditional methods pose significant challenges to cross-layer optimization. In this paper, joint subcarrier allocation and beamforming optimization are investigated for the MEC-aided cell-free network from the perspective of deep learning to maximize the weighted sum rate. Specifically, we convert the underlying problem into a joint multi-task optimization problem and then propose a centralized multi-task self-supervised learning algorithm to solve the problem so as to avoid costly manual labeling. Therein, two novel and general loss functions, i.e., negative fraction linear loss and exponential linear loss whose advantages in robustness and target domain have been proved and discussed, are designed to enable self-supervised learning. Moreover, we further design a MEC-enabled distributed multi-task self-supervised learning (DMTSSL) algorithm, with low complexity and high scalability to address the challenge of dimensional disaster. Finally, we develop the distance-aware transfer learning algorithm based on the DMTSSL algorithm to handle the dynamic scenario with negligible computation cost. Simulation results under $3$rd generation partnership project 38.901 urban-macrocell scenario demonstrate the superiority of the proposed algorithms over the baseline algorithms.
Related papers
- RESIST: Resilient Decentralized Learning Using Consensus Gradient Descent [11.22833419439317]
Empirical robustness risk (ERM) is a cornerstone of modern machine learning (ML)
This paper focuses on the man-in-the-middle (MITM) attack, which can cause models to deviate significantly from their intended ERM solutions.
We propose RESIST, an algorithm designed to be robust against adversarially compromised communication links.
arXiv Detail & Related papers (2025-02-11T21:48:10Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
federated learning (FL) emerges as an effective distributed machine learning framework.
We discuss the challenges and solutions of achieving scalable wireless FL from the perspectives of both network design and resource orchestration.
arXiv Detail & Related papers (2023-10-08T08:55:03Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - RHFedMTL: Resource-Aware Hierarchical Federated Multi-Task Learning [11.329273673732217]
Federated learning is an effective way to enable AI over massive distributed nodes with security.
It is challenging to ensure the privacy while maintain a coupled multi-task learning across multiple base stations (BSs) and terminals.
In this paper, inspired by the natural cloud-BS-terminal hierarchy of cellular works, we provide a viable resource-aware hierarchical federated MTL (RHFedMTL) solution.
arXiv Detail & Related papers (2023-06-01T13:49:55Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system.
Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively.
arXiv Detail & Related papers (2022-11-01T14:16:05Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization based on the Power of Two Choices principle.
The proposed Heuristically-Assisted DRL (HA-DRL) allows to accelerate the learning process and gain in resource usage when compared against other state-of-the-art approaches.
arXiv Detail & Related papers (2021-05-14T10:04:17Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - A Machine Learning Approach for Task and Resource Allocation in Mobile
Edge Computing Based Networks [108.57859531628264]
A joint task, spectrum, and transmit power allocation problem is investigated for a wireless network.
The proposed algorithm can reduce the number of iterations needed for convergence and the maximal delay among all users by up to 18% and 11.1% compared to the standard Q-learning algorithm.
arXiv Detail & Related papers (2020-07-20T13:46:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.