An explainable operator approximation framework under the guideline of Green's function
- URL: http://arxiv.org/abs/2412.16644v1
- Date: Sat, 21 Dec 2024 14:31:03 GMT
- Title: An explainable operator approximation framework under the guideline of Green's function
- Authors: Jianghang Gu, Ling Wen, Yuntian Chen, Shiyi Chen,
- Abstract summary: We introduce a novel framework, GreensONet, to learn embedded Green's functions and solve PDEs via Green's integral formulation.
The framework's accuracy and generalization ability surpass those of existing methods.
- Score: 1.1174586184779578
- License:
- Abstract: Traditional numerical methods, such as the finite element method and finite volume method, adress partial differential equations (PDEs) by discretizing them into algebraic equations and solving these iteratively. However, this process is often computationally expensive and time-consuming. An alternative approach involves transforming PDEs into integral equations and solving them using Green's functions, which provide analytical solutions. Nevertheless, deriving Green's functions analytically is a challenging and non-trivial task, particularly for complex systems. In this study, we introduce a novel framework, termed GreensONet, which is constructed based on the strucutre of deep operator networks (DeepONet) to learn embedded Green's functions and solve PDEs via Green's integral formulation. Specifically, the Trunk Net within GreensONet is designed to approximate the unknown Green's functions of the system, while the Branch Net are utilized to approximate the auxiliary gradients of the Green's function. These outputs are subsequently employed to perform surface integrals and volume integrals, incorporating user-defined boundary conditions and source terms, respectively. The effectiveness of the proposed framework is demonstrated on three types of PDEs in bounded domains: 3D heat conduction equations, reaction-diffusion equations, and Stokes equations. Comparative results in these cases demonstrate that GreenONet's accuracy and generalization ability surpass those of existing methods, including Physics-Informed Neural Networks (PINN), DeepONet, Physics-Informed DeepONet (PI-DeepONet), and Fourier Neural Operators (FNO).
Related papers
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Neural Green's Operators for Parametric Partial Differential Equations [0.0]
This work introduces neural Green's operators (NGOs), a novel neural operator network architecture that learns the solution operator for a parametric family of linear partial differential equations (PDEs)
NGOs are similar to deep operator networks (DeepONets) and variationally mimetic operator networks (VarMiONs)
arXiv Detail & Related papers (2024-06-04T00:02:52Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
We present the Universal PDE solver (Unisolver) capable of solving a wide scope of PDEs.
Our key finding is that a PDE solution is fundamentally under the control of a series of PDE components.
Unisolver achieves consistent state-of-the-art results on three challenging large-scale benchmarks.
arXiv Detail & Related papers (2024-05-27T15:34:35Z) - Physics-informed Discretization-independent Deep Compositional Operator Network [1.2430809884830318]
We introduce a novel physics-informed model architecture which can generalize to various discrete representations of PDE parameters and irregular domain shapes.
Inspired by deep operator neural networks, our model involves a discretization-independent learning of parameter embedding repeatedly.
Numerical results demonstrate the accuracy and efficiency of the proposed method.
arXiv Detail & Related papers (2024-04-21T12:41:30Z) - Learning Domain-Independent Green's Function For Elliptic Partial
Differential Equations [0.0]
Green's function characterizes a partial differential equation (PDE) and maps its solution in the entire domain as integrals.
We propose a novel boundary integral network to learn the domain-independent Green's function, referred to as BIN-G.
We demonstrate that our numerical scheme enables fast training and accurate evaluation of the Green's function for PDEs with variable coefficients.
arXiv Detail & Related papers (2024-01-30T17:00:22Z) - GIT-Net: Generalized Integral Transform for Operator Learning [58.13313857603536]
This article introduces GIT-Net, a deep neural network architecture for approximating Partial Differential Equation (PDE) operators.
GIT-Net harnesses the fact that differential operators commonly used for defining PDEs can often be represented parsimoniously when expressed in specialized functional bases.
Numerical experiments demonstrate that GIT-Net is a competitive neural network operator, exhibiting small test errors and low evaluations across a range of PDE problems.
arXiv Detail & Related papers (2023-12-05T03:03:54Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
We study the benefits of weight-tied neural network architectures for steady-state PDEs.
We propose FNO-DEQ, a deep equilibrium variant of the FNO architecture that directly solves for the solution of a steady-state PDE.
arXiv Detail & Related papers (2023-11-30T22:34:57Z) - Data-driven discovery of Green's functions [0.0]
This thesis introduces theoretical results and deep learning algorithms to learn Green's functions associated with linear partial differential equations.
The construction connects the fields of PDE learning and numerical linear algebra.
Rational neural networks (NNs) are introduced and consist of neural networks with trainable rational activation functions.
arXiv Detail & Related papers (2022-10-28T09:41:50Z) - BI-GreenNet: Learning Green's functions by boundary integral network [14.008606361378149]
Green's function plays a significant role in both theoretical analysis and numerical computing of partial differential equations.
We develop a new method for computing Green's function with high accuracy.
arXiv Detail & Related papers (2022-04-28T01:42:35Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.