Algorithm Design for Continual Learning in IoT Networks
- URL: http://arxiv.org/abs/2412.16830v2
- Date: Tue, 24 Dec 2024 02:19:59 GMT
- Title: Algorithm Design for Continual Learning in IoT Networks
- Authors: Shugang Hao, Lingjie Duan,
- Abstract summary: Continual learning (CL) is a new online learning technique over sequentially generated streaming data from different tasks.
In practical IoT networks, an autonomous vehicle to sample data and learn different tasks can route and alter the order of task pattern.
- Score: 16.35495567193046
- License:
- Abstract: Continual learning (CL) is a new online learning technique over sequentially generated streaming data from different tasks, aiming to maintain a small forgetting loss on previously-learned tasks. Existing work focuses on reducing the forgetting loss under a given task sequence. However, if similar tasks continuously appear to the end time, the forgetting loss is still huge on prior distinct tasks. In practical IoT networks, an autonomous vehicle to sample data and learn different tasks can route and alter the order of task pattern at increased travelling cost. To our best knowledge, we are the first to study how to opportunistically route the testing object and alter the task sequence in CL. We formulate a new optimization problem and prove it NP-hard. We propose a polynomial-time algorithm to achieve approximation ratios of $\frac{3}{2}$ for underparameterized case and $\frac{3}{2} + r^{1-T}$ for overparameterized case, respectively, where $r:=1-\frac{n}{m}$ is a parameter of feature number $m$ and sample number $n$ and $T$ is the task number. Simulation results verify our algorithm's close-to-optimum performance.
Related papers
- CLR: Channel-wise Lightweight Reprogramming for Continual Learning [63.94773340278971]
Continual learning aims to emulate the human ability to continually accumulate knowledge over sequential tasks.
The main challenge is to maintain performance on previously learned tasks after learning new tasks.
We propose a Channel-wise Lightweight Reprogramming approach that helps convolutional neural networks overcome catastrophic forgetting.
arXiv Detail & Related papers (2023-07-21T06:56:21Z) - Provable Multi-Task Representation Learning by Two-Layer ReLU Neural Networks [69.38572074372392]
We present the first results proving that feature learning occurs during training with a nonlinear model on multiple tasks.
Our key insight is that multi-task pretraining induces a pseudo-contrastive loss that favors representations that align points that typically have the same label across tasks.
arXiv Detail & Related papers (2023-07-13T16:39:08Z) - FAMO: Fast Adaptive Multitask Optimization [48.59232177073481]
We introduce Fast Adaptive Multitask Optimization FAMO, a dynamic weighting method that decreases task losses in a balanced way.
Our results indicate that FAMO achieves comparable or superior performance to state-of-the-art gradient manipulation techniques.
arXiv Detail & Related papers (2023-06-06T15:39:54Z) - Improved Active Multi-Task Representation Learning via Lasso [44.607652031235716]
In this paper, we show the dominance of the L1-regularized-relevance-based ($nu1$) strategy by giving a lower bound for the $nu2$-based strategy.
We also characterize the potential of our $nu1$-based strategy in sample-cost-sensitive settings.
arXiv Detail & Related papers (2023-06-05T03:08:29Z) - Reinforcement Learning with Success Induced Task Prioritization [68.8204255655161]
We introduce Success Induced Task Prioritization (SITP), a framework for automatic curriculum learning.
The algorithm selects the order of tasks that provide the fastest learning for agents.
We demonstrate that SITP matches or surpasses the results of other curriculum design methods.
arXiv Detail & Related papers (2022-12-30T12:32:43Z) - Provably Efficient Lifelong Reinforcement Learning with Linear Function
Approximation [41.460894569204065]
We study lifelong reinforcement learning (RL) in a regret setting of linear contextual Markov decision process (MDP)
We propose an algorithm, called UCB Lifelong Value Distillation (UCBlvd), that provably achieves sublinear regret for any sequence of tasks.
arXiv Detail & Related papers (2022-06-01T06:53:28Z) - Provable Lifelong Learning of Representations [21.440845049501778]
We propose a provable lifelong learning algorithm that maintains and refines the internal feature representation.
We prove that for any desired accuracy on all tasks, the dimension of the representation remains close to that of the underlying representation.
arXiv Detail & Related papers (2021-10-27T00:41:23Z) - Sample Efficient Linear Meta-Learning by Alternating Minimization [74.40553081646995]
We study a simple alternating minimization method (MLLAM) which alternately learns the low-dimensional subspace and the regressors.
We show that for a constant subspace dimension MLLAM obtains nearly-optimal estimation error, despite requiring only $Omega(log d)$ samples per task.
We propose a novel task subset selection scheme that ensures the same strong statistical guarantee as MLLAM.
arXiv Detail & Related papers (2021-05-18T06:46:48Z) - Online Apprenticeship Learning [58.45089581278177]
In Apprenticeship Learning (AL), we are given a Markov Decision Process (MDP) without access to the cost function.
The goal is to find a policy that matches the expert's performance on some predefined set of cost functions.
We show that the OAL problem can be effectively solved by combining two mirror descent based no-regret algorithms.
arXiv Detail & Related papers (2021-02-13T12:57:51Z) - Fast Learning for Renewal Optimization in Online Task Scheduling [18.935043109084543]
This paper considers online optimization of a renewal-reward system.
The probability distribution for the task type vector is unknown.
The proposed algorithm uses an auxiliary variable that is updated according to a classic Robbins-Monro iteration.
arXiv Detail & Related papers (2020-07-18T22:44:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.