Adaptive Dataset Quantization
- URL: http://arxiv.org/abs/2412.16895v1
- Date: Sun, 22 Dec 2024 07:08:29 GMT
- Title: Adaptive Dataset Quantization
- Authors: Muquan Li, Dongyang Zhang, Qiang Dong, Xiurui Xie, Ke Qin,
- Abstract summary: We introduce a versatile framework for dataset compression, namely Adaptive dataset Quantization (ADQ)
We propose a novel adaptive sampling strategy through the evaluation of generated bins' representativeness score, diversity score and importance score.
Our method not only exhibits superior generalization capability across different architectures, but also attains state-of-the-art results, surpassing DQ by average 3% on various datasets.
- Score: 2.0105434963031463
- License:
- Abstract: Contemporary deep learning, characterized by the training of cumbersome neural networks on massive datasets, confronts substantial computational hurdles. To alleviate heavy data storage burdens on limited hardware resources, numerous dataset compression methods such as dataset distillation (DD) and coreset selection have emerged to obtain a compact but informative dataset through synthesis or selection for efficient training. However, DD involves an expensive optimization procedure and exhibits limited generalization across unseen architectures, while coreset selection is limited by its low data keep ratio and reliance on heuristics, hindering its practicality and feasibility. To address these limitations, we introduce a newly versatile framework for dataset compression, namely Adaptive Dataset Quantization (ADQ). Specifically, we first identify the sub-optimal performance of naive Dataset Quantization (DQ), which relies on uniform sampling and overlooks the varying importance of each generated bin. Subsequently, we propose a novel adaptive sampling strategy through the evaluation of generated bins' representativeness score, diversity score and importance score, where the former two scores are quantified by the texture level and contrastive learning-based techniques, respectively. Extensive experiments demonstrate that our method not only exhibits superior generalization capability across different architectures, but also attains state-of-the-art results, surpassing DQ by average 3\% on various datasets.
Related papers
- Dataset Distillation as Pushforward Optimal Quantization [1.039189397779466]
We propose a simple extension of the state-of-the-art data distillation method D4M, achieving better performance on the ImageNet-1K dataset with trivial additional computation.
We demonstrate that when equipped with an encoder-decoder structure, the empirically successful disentangled methods can be reformulated as an optimal quantization problem.
In particular, we link existing disentangled dataset distillation methods to the classical optimal quantization and Wasserstein barycenter problems, demonstrating consistency of distilled datasets for diffusion-based generative priors.
arXiv Detail & Related papers (2025-01-13T20:41:52Z) - Diffusion-Augmented Coreset Expansion for Scalable Dataset Distillation [18.474302012851087]
We propose a two-stage solution for dataset distillation.
First, we compress the dataset by selecting only the most informative patches to form a coreset.
Next, we leverage a generative foundation model to dynamically expand this compressed set in real-time.
We demonstrate a significant improvement of over 10% compared to the state-of-the-art on several large-scale dataset distillation benchmarks.
arXiv Detail & Related papers (2024-12-05T23:40:27Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - Not All Samples Should Be Utilized Equally: Towards Understanding and Improving Dataset Distillation [57.6797306341115]
We take an initial step towards understanding various matching-based DD methods from the perspective of sample difficulty.
We then extend the neural scaling laws of data pruning to DD to theoretically explain these matching-based methods.
We introduce the Sample Difficulty Correction (SDC) approach, designed to predominantly generate easier samples to achieve higher dataset quality.
arXiv Detail & Related papers (2024-08-22T15:20:32Z) - Dataset Quantization with Active Learning based Adaptive Sampling [11.157462442942775]
We show that maintaining performance is feasible even with uneven sample distributions.
We propose a novel active learning based adaptive sampling strategy to optimize the sample selection.
Our approach outperforms the state-of-the-art dataset compression methods.
arXiv Detail & Related papers (2024-07-09T23:09:18Z) - D2 Pruning: Message Passing for Balancing Diversity and Difficulty in
Data Pruning [70.98091101459421]
Coreset selection seeks to select a subset of the training data so as to maximize the performance of models trained on this subset, also referred to as coreset.
We propose a novel pruning algorithm, D2 Pruning, that uses forward and reverse message passing over this dataset graph for coreset selection.
Results show that D2 Pruning improves coreset selection over previous state-of-the-art methods for up to 70% pruning rates.
arXiv Detail & Related papers (2023-10-11T23:01:29Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Towards Efficient Deep Hashing Retrieval: Condensing Your Data via
Feature-Embedding Matching [7.908244841289913]
The expenses involved in training state-of-the-art deep hashing retrieval models have witnessed an increase.
The state-of-the-art dataset distillation methods can not expand to all deep hashing retrieval methods.
We propose an efficient condensation framework that addresses these limitations by matching the feature-embedding between synthetic set and real set.
arXiv Detail & Related papers (2023-05-29T13:23:55Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
Imbalanced learning is a fundamental challenge in data mining, where there is a disproportionate ratio of training samples in each class.
Over-sampling is an effective technique to tackle imbalanced learning through generating synthetic samples for the minority class.
We propose AutoSMOTE, an automated over-sampling algorithm that can jointly optimize different levels of decisions.
arXiv Detail & Related papers (2022-08-26T04:28:01Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.