Generate to Discriminate: Expert Routing for Continual Learning
- URL: http://arxiv.org/abs/2412.17009v2
- Date: Sat, 28 Dec 2024 04:42:02 GMT
- Title: Generate to Discriminate: Expert Routing for Continual Learning
- Authors: Yewon Byun, Sanket Vaibhav Mehta, Saurabh Garg, Emma Strubell, Michael Oberst, Bryan Wilder, Zachary C. Lipton,
- Abstract summary: Generate to Discriminate (G2D) is a continual learning method that leverages synthetic data to train a domain-discriminator.
We observe that G2D outperforms competitive domain-incremental learning methods on tasks in both vision and language modalities.
- Score: 59.71853576559306
- License:
- Abstract: In many real-world settings, regulations and economic incentives permit the sharing of models but not data across institutional boundaries. In such scenarios, practitioners might hope to adapt models to new domains, without losing performance on previous domains (so-called catastrophic forgetting). While any single model may struggle to achieve this goal, learning an ensemble of domain-specific experts offers the potential to adapt more closely to each individual institution. However, a core challenge in this context is determining which expert to deploy at test time. In this paper, we propose Generate to Discriminate (G2D), a domain-incremental continual learning method that leverages synthetic data to train a domain-discriminator that routes samples at inference time to the appropriate expert. Surprisingly, we find that leveraging synthetic data in this capacity is more effective than using the samples to \textit{directly} train the downstream classifier (the more common approach to leveraging synthetic data in the lifelong learning literature). We observe that G2D outperforms competitive domain-incremental learning methods on tasks in both vision and language modalities, providing a new perspective on the use of synthetic data in the lifelong learning literature.
Related papers
- Artificial Inductive Bias for Synthetic Tabular Data Generation in Data-Scarce Scenarios [8.062368743143388]
We propose a novel methodology for generating realistic and reliable synthetic data with Deep Generative Models (DGMs) in limited real-data environments.
Our approach proposes several ways to generate an artificial inductive bias in a DGM through transfer learning and meta-learning techniques.
We validate our approach using two state-of-the-art DGMs, namely, a Variational Autoencoder and a Generative Adversarial Network, to show that our artificial inductive bias fuels superior synthetic data quality.
arXiv Detail & Related papers (2024-07-03T12:53:42Z) - Pre-trained Recommender Systems: A Causal Debiasing Perspective [19.712997823535066]
We develop a generic recommender that captures universal interaction patterns by training on generic user-item interaction data extracted from different domains.
Our empirical studies show that the proposed model could significantly improve the recommendation performance in zero- and few-shot learning settings.
arXiv Detail & Related papers (2023-10-30T03:37:32Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - Domain Adaptation of Synthetic Driving Datasets for Real-World
Autonomous Driving [0.11470070927586014]
Network trained with synthetic data for certain computer vision tasks degrade significantly when tested on real world data.
In this paper, we propose and evaluate novel ways for the betterment of such approaches.
We propose a novel method to efficiently incorporate semantic supervision into this pair selection, which helps in boosting the performance of the model.
arXiv Detail & Related papers (2023-02-08T15:51:54Z) - GIPSO: Geometrically Informed Propagation for Online Adaptation in 3D
LiDAR Segmentation [60.07812405063708]
3D point cloud semantic segmentation is fundamental for autonomous driving.
Most approaches in the literature neglect an important aspect, i.e., how to deal with domain shift when handling dynamic scenes.
This paper advances the state of the art in this research field.
arXiv Detail & Related papers (2022-07-20T09:06:07Z) - Incremental Learning Meets Transfer Learning: Application to Multi-site
Prostate MRI Segmentation [16.50535949349874]
We propose a novel multi-site segmentation framework called incremental-transfer learning (ITL)
ITL learns a model from multi-site datasets in an end-to-end sequential fashion.
We show for the first time that leveraging our ITL training scheme is able to alleviate challenging catastrophic problems in incremental learning.
arXiv Detail & Related papers (2022-06-03T02:32:01Z) - On Generalizing Beyond Domains in Cross-Domain Continual Learning [91.56748415975683]
Deep neural networks often suffer from catastrophic forgetting of previously learned knowledge after learning a new task.
Our proposed approach learns new tasks under domain shift with accuracy boosts up to 10% on challenging datasets such as DomainNet and OfficeHome.
arXiv Detail & Related papers (2022-03-08T09:57:48Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in video surveillance.
Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models.
In this paper, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them.
arXiv Detail & Related papers (2021-09-12T15:51:41Z) - Source-Free Open Compound Domain Adaptation in Semantic Segmentation [99.82890571842603]
In SF-OCDA, only the source pre-trained model and the target data are available to learn the target model.
We propose the Cross-Patch Style Swap (CPSS) to diversify samples with various patch styles in the feature-level.
Our method produces state-of-the-art results on the C-Driving dataset.
arXiv Detail & Related papers (2021-06-07T08:38:41Z) - Unsupervised Domain Adaptation with Multiple Domain Discriminators and
Adaptive Self-Training [22.366638308792734]
Unsupervised Domain Adaptation (UDA) aims at improving the generalization capability of a model trained on a source domain to perform well on a target domain for which no labeled data is available.
We propose an approach to adapt a deep neural network trained on synthetic data to real scenes addressing the domain shift between the two different data distributions.
arXiv Detail & Related papers (2020-04-27T11:48:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.