Adam on Local Time: Addressing Nonstationarity in RL with Relative Adam Timesteps
- URL: http://arxiv.org/abs/2412.17113v1
- Date: Sun, 22 Dec 2024 18:01:08 GMT
- Title: Adam on Local Time: Addressing Nonstationarity in RL with Relative Adam Timesteps
- Authors: Benjamin Ellis, Matthew T. Jackson, Andrei Lupu, Alexander D. Goldie, Mattie Fellows, Shimon Whiteson, Jakob Foerster,
- Abstract summary: We adapt the widely used Adam optimiser for use in reinforcement learning.
We show that Adam-Rel uses the local timestep within an epoch, essentially resetting Adam's timestep to 0 after target changes.
We then show that increases in gradient norm occur in RL in practice, and examine the differences between our theoretical model and the observed data.
- Score: 65.64965527170156
- License:
- Abstract: In reinforcement learning (RL), it is common to apply techniques used broadly in machine learning such as neural network function approximators and momentum-based optimizers. However, such tools were largely developed for supervised learning rather than nonstationary RL, leading practitioners to adopt target networks, clipped policy updates, and other RL-specific implementation tricks to combat this mismatch, rather than directly adapting this toolchain for use in RL. In this paper, we take a different approach and instead address the effect of nonstationarity by adapting the widely used Adam optimiser. We first analyse the impact of nonstationary gradient magnitude -- such as that caused by a change in target network -- on Adam's update size, demonstrating that such a change can lead to large updates and hence sub-optimal performance. To address this, we introduce Adam-Rel. Rather than using the global timestep in the Adam update, Adam-Rel uses the local timestep within an epoch, essentially resetting Adam's timestep to 0 after target changes. We demonstrate that this avoids large updates and reduces to learning rate annealing in the absence of such increases in gradient magnitude. Evaluating Adam-Rel in both on-policy and off-policy RL, we demonstrate improved performance in both Atari and Craftax. We then show that increases in gradient norm occur in RL in practice, and examine the differences between our theoretical model and the observed data.
Related papers
- CAdam: Confidence-Based Optimization for Online Learning [35.84013976735154]
We introduce CAdam, a confidence-based optimization strategy that assesses the consistence between the momentum and the gradient for each parameter dimension before deciding on updates.
Our experiments with both synthetic and real-world datasets demonstrate that CAdam surpasses other well-known systems.
In large-scale A/B testing within a live recommendation system, CAdam significantly enhances model performance compared to Adam.
arXiv Detail & Related papers (2024-11-29T12:00:27Z) - Stop Regressing: Training Value Functions via Classification for
Scalable Deep RL [109.44370201929246]
We show that training value functions with categorical cross-entropy improves performance and scalability in a variety of domains.
These include: single-task RL on Atari 2600 games with SoftMoEs, multi-task RL on Atari with large-scale ResNets, robotic manipulation with Q-transformers, playing Chess without search, and a language-agent Wordle task with high-capacity Transformers.
arXiv Detail & Related papers (2024-03-06T18:55:47Z) - AdamL: A fast adaptive gradient method incorporating loss function [1.6025685183216696]
We propose AdamL, a novel variant of the Adam, that takes into account the loss function information to attain better results.
We show that AdamL achieves either the fastest convergence or the lowest objective function values when compared to Adam, EAdam, and AdaBelief.
In the case of vanilla convolutional neural networks, AdamL stands out from the other Adam's variants and does not require the manual adjustment of the learning rate during the later stage of the training.
arXiv Detail & Related papers (2023-12-23T16:32:29Z) - Entropy Regularized Reinforcement Learning with Cascading Networks [9.973226671536041]
Deep RL uses neural networks as function approximators.
One of the major difficulties of RL is the absence of i.i.d. data.
In this work, we challenge the common practices of the (un)supervised learning community of using a fixed neural architecture.
arXiv Detail & Related papers (2022-10-16T10:28:59Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Understanding the Generalization of Adam in Learning Neural Networks
with Proper Regularization [118.50301177912381]
We show that Adam can converge to different solutions of the objective with provably different errors, even with weight decay globalization.
We show that if convex, and the weight decay regularization is employed, any optimization algorithms including Adam will converge to the same solution.
arXiv Detail & Related papers (2021-08-25T17:58:21Z) - How Do Adam and Training Strategies Help BNNs Optimization? [50.22482900678071]
We show that Adam is better equipped to handle the rugged loss surface of BNNs and reaches a better optimum with higher generalization ability.
We derive a simple training scheme, building on existing Adam-based optimization, which achieves 70.5% top-1 accuracy on the ImageNet dataset.
arXiv Detail & Related papers (2021-06-21T17:59:51Z) - GDI: Rethinking What Makes Reinforcement Learning Different From
Supervised Learning [8.755783981297396]
We extend the basic paradigm of RL called the Generalized Policy Iteration (GPI) into a more generalized version, which is called the Generalized Data Distribution Iteration (GDI)
Our algorithm has achieved 9620.98% mean human normalized score (HNS), 1146.39% median HNS and 22 human world record breakthroughs (HWRB) using only 200 training frames.
arXiv Detail & Related papers (2021-06-11T08:31:12Z) - AdamP: Slowing Down the Slowdown for Momentum Optimizers on
Scale-invariant Weights [53.8489656709356]
Normalization techniques are a boon for modern deep learning.
It is often overlooked, however, that the additional introduction of momentum results in a rapid reduction in effective step sizes for scale-invariant weights.
In this paper, we verify that the widely-adopted combination of the two ingredients lead to the premature decay of effective step sizes and sub-optimal model performances.
arXiv Detail & Related papers (2020-06-15T08:35:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.