Fair and Accurate Regression: Strong Formulations and Algorithms
- URL: http://arxiv.org/abs/2412.17116v1
- Date: Sun, 22 Dec 2024 18:04:54 GMT
- Title: Fair and Accurate Regression: Strong Formulations and Algorithms
- Authors: Anna Deza, Andrés Gómez, Alper Atamtürk,
- Abstract summary: This paper introduces mixed-integer optimization methods to solve regression problems that incorporate metrics.
We propose an exact formulation for training fair regression models.
Numerical experiments conducted on fair least squares and fair logistic regression problems show competitive statistical performance.
- Score: 5.93858665501805
- License:
- Abstract: This paper introduces mixed-integer optimization methods to solve regression problems that incorporate fairness metrics. We propose an exact formulation for training fair regression models. To tackle this computationally hard problem, we study the polynomially-solvable single-factor and single-observation subproblems as building blocks and derive their closed convex hull descriptions. Strong formulations obtained for the general fair regression problem in this manner are utilized to solve the problem with a branch-and-bound algorithm exactly or as a relaxation to produce fair and accurate models rapidly. Moreover, to handle large-scale instances, we develop a coordinate descent algorithm motivated by the convex-hull representation of the single-factor fair regression problem to improve a given solution efficiently. Numerical experiments conducted on fair least squares and fair logistic regression problems show competitive statistical performance with state-of-the-art methods while significantly reducing training times.
Related papers
- Efficient Fairness-Performance Pareto Front Computation [51.558848491038916]
We show that optimal fair representations possess several useful structural properties.
We then show that these approxing problems can be solved efficiently via concave programming methods.
arXiv Detail & Related papers (2024-09-26T08:46:48Z) - Distributed High-Dimensional Quantile Regression: Estimation Efficiency and Support Recovery [0.0]
We focus on distributed estimation and support recovery for high-dimensional linear quantile regression.
We transform the original quantile regression into the least-squares optimization.
An efficient algorithm is developed, which enjoys high computation and communication efficiency.
arXiv Detail & Related papers (2024-05-13T08:32:22Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Mean Parity Fair Regression in RKHS [43.98593032593897]
We study the fair regression problem under the notion of Mean Parity (MP) fairness.
We address this problem by leveraging reproducing kernel Hilbert space (RKHS)
We derive a corresponding regression function that can be implemented efficiently and provides interpretable tradeoffs.
arXiv Detail & Related papers (2023-02-21T02:44:50Z) - Vector-Valued Least-Squares Regression under Output Regularity
Assumptions [73.99064151691597]
We propose and analyse a reduced-rank method for solving least-squares regression problems with infinite dimensional output.
We derive learning bounds for our method, and study under which setting statistical performance is improved in comparison to full-rank method.
arXiv Detail & Related papers (2022-11-16T15:07:00Z) - Linear regression with partially mismatched data: local search with
theoretical guarantees [9.398989897176953]
We study an important variant of linear regression in which the predictor-response pairs are partially mismatched.
We use an optimization formulation to simultaneously learn the underlying regression coefficients and the permutation corresponding to the mismatches.
We prove that our local search algorithm converges to a nearly-optimal solution at a linear rate.
arXiv Detail & Related papers (2021-06-03T23:32:12Z) - Progressive Batching for Efficient Non-linear Least Squares [31.082253632197023]
Most improvements of the basic Gauss-Newton tackle convergence guarantees or leverage the sparsity of the underlying problem structure for computational speedup.
Our work borrows ideas from both machine learning and statistics, and we present an approach for non-linear least-squares that guarantees convergence while at the same time significantly reduces the required amount of computation.
arXiv Detail & Related papers (2020-10-21T13:00:04Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - A spectral algorithm for robust regression with subgaussian rates [0.0]
We study a new linear up to quadratic time algorithm for linear regression in the absence of strong assumptions on the underlying distributions of samples.
The goal is to design a procedure which attains the optimal sub-gaussian error bound even though the data have only finite moments.
arXiv Detail & Related papers (2020-07-12T19:33:50Z) - Approximation Schemes for ReLU Regression [80.33702497406632]
We consider the fundamental problem of ReLU regression.
The goal is to output the best fitting ReLU with respect to square loss given to draws from some unknown distribution.
arXiv Detail & Related papers (2020-05-26T16:26:17Z) - MINA: Convex Mixed-Integer Programming for Non-Rigid Shape Alignment [77.38594866794429]
convex mixed-integer programming formulation for non-rigid shape matching.
We propose a novel shape deformation model based on an efficient low-dimensional discrete model.
arXiv Detail & Related papers (2020-02-28T09:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.