Where Did Your Model Learn That? Label-free Influence for Self-supervised Learning
- URL: http://arxiv.org/abs/2412.17170v1
- Date: Sun, 22 Dec 2024 21:43:56 GMT
- Title: Where Did Your Model Learn That? Label-free Influence for Self-supervised Learning
- Authors: Nidhin Harilal, Amit Kiran Rege, Reza Akbarian Bafghi, Maziar Raissi, Claire Monteleoni,
- Abstract summary: Self-supervised learning has revolutionized learning from large-scale unlabeled datasets.
Introductory relationship between pretraining data and learned representations remains poorly understood.
We introduce Influence-SSL, a novel and label-free approach for defining influence functions tailored to SSL.
- Score: 0.48933451909251774
- License:
- Abstract: Self-supervised learning (SSL) has revolutionized learning from large-scale unlabeled datasets, yet the intrinsic relationship between pretraining data and the learned representations remains poorly understood. Traditional supervised learning benefits from gradient-based data attribution tools like influence functions that measure the contribution of an individual data point to model predictions. However, existing definitions of influence rely on labels, making them unsuitable for SSL settings. We address this gap by introducing Influence-SSL, a novel and label-free approach for defining influence functions tailored to SSL. Our method harnesses the stability of learned representations against data augmentations to identify training examples that help explain model predictions. We provide both theoretical foundations and empirical evidence to show the utility of Influence-SSL in analyzing pre-trained SSL models. Our analysis reveals notable differences in how SSL models respond to influential data compared to supervised models. Finally, we validate the effectiveness of Influence-SSL through applications in duplicate detection, outlier identification and fairness analysis. Code is available at: \url{https://github.com/cryptonymous9/Influence-SSL}.
Related papers
- Understanding the Role of Equivariance in Self-supervised Learning [51.56331245499712]
equivariant self-supervised learning (E-SSL) learns features to be augmentation-aware.
We identify a critical explaining-away effect in E-SSL that creates a synergy between the equivariant and classification tasks.
We reveal several principles for practical designs of E-SSL.
arXiv Detail & Related papers (2024-11-10T16:09:47Z) - A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification [51.35500308126506]
Self-supervised learning (SSL) is a machine learning approach where the data itself provides supervision, eliminating the need for external labels.
We study how classification-based evaluation protocols for SSL correlate and how well they predict downstream performance on different dataset types.
arXiv Detail & Related papers (2024-07-16T23:17:36Z) - Reinforcement Learning-Guided Semi-Supervised Learning [20.599506122857328]
We propose a novel Reinforcement Learning Guided SSL method, RLGSSL, that formulates SSL as a one-armed bandit problem.
RLGSSL incorporates a carefully designed reward function that balances the use of labeled and unlabeled data to enhance generalization performance.
We demonstrate the effectiveness of RLGSSL through extensive experiments on several benchmark datasets and show that our approach achieves consistent superior performance compared to state-of-the-art SSL methods.
arXiv Detail & Related papers (2024-05-02T21:52:24Z) - Making Self-supervised Learning Robust to Spurious Correlation via
Learning-speed Aware Sampling [26.444935219428036]
Self-supervised learning (SSL) has emerged as a powerful technique for learning rich representations from unlabeled data.
In real-world settings, spurious correlations between some attributes (e.g. race, gender and age) and labels for downstream tasks often exist.
We propose a learning-speed aware SSL (LA-SSL) approach, in which we sample each training data with a probability that is inversely related to its learning speed.
arXiv Detail & Related papers (2023-11-27T22:52:45Z) - Explaining, Analyzing, and Probing Representations of Self-Supervised
Learning Models for Sensor-based Human Activity Recognition [2.2082422928825136]
Self-supervised learning (SSL) frameworks have been extensively applied to sensor-based Human Activity Recognition (HAR)
In this paper, we aim to analyze deep representations of two recent SSL frameworks, namely SimCLR and VICReg.
arXiv Detail & Related papers (2023-04-14T07:53:59Z) - Semi-Leak: Membership Inference Attacks Against Semi-supervised Learning [42.089020844936805]
Semi-supervised learning (SSL) leverages both labeled and unlabeled data to train machine learning (ML) models.
We propose the first data augmentation-based membership inference attacks against ML models trained by SSL.
Our evaluation shows that the proposed attack can consistently outperform existing membership inference attacks.
arXiv Detail & Related papers (2022-07-25T21:17:24Z) - On Higher Adversarial Susceptibility of Contrastive Self-Supervised
Learning [104.00264962878956]
Contrastive self-supervised learning (CSL) has managed to match or surpass the performance of supervised learning in image and video classification.
It is still largely unknown if the nature of the representation induced by the two learning paradigms is similar.
We identify the uniform distribution of data representation over a unit hypersphere in the CSL representation space as the key contributor to this phenomenon.
We devise strategies that are simple, yet effective in improving model robustness with CSL training.
arXiv Detail & Related papers (2022-07-22T03:49:50Z) - Self-supervised Learning is More Robust to Dataset Imbalance [65.84339596595383]
We investigate self-supervised learning under dataset imbalance.
Off-the-shelf self-supervised representations are already more robust to class imbalance than supervised representations.
We devise a re-weighted regularization technique that consistently improves the SSL representation quality on imbalanced datasets.
arXiv Detail & Related papers (2021-10-11T06:29:56Z) - ReSSL: Relational Self-Supervised Learning with Weak Augmentation [68.47096022526927]
Self-supervised learning has achieved great success in learning visual representations without data annotations.
We introduce a novel relational SSL paradigm that learns representations by modeling the relationship between different instances.
Our proposed ReSSL significantly outperforms the previous state-of-the-art algorithms in terms of both performance and training efficiency.
arXiv Detail & Related papers (2021-07-20T06:53:07Z) - Self-Supervised Learning of Graph Neural Networks: A Unified Review [50.71341657322391]
Self-supervised learning is emerging as a new paradigm for making use of large amounts of unlabeled samples.
We provide a unified review of different ways of training graph neural networks (GNNs) using SSL.
Our treatment of SSL methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and algorithms.
arXiv Detail & Related papers (2021-02-22T03:43:45Z) - Semi-supervised learning objectives as log-likelihoods in a generative
model of data curation [32.45282187405337]
We formulate SSL objectives as a log-likelihood in a generative model of data curation.
We give a proof-of-principle for Bayesian SSL on toy data.
arXiv Detail & Related papers (2020-08-13T13:50:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.