MatchMiner-AI: An Open-Source Solution for Cancer Clinical Trial Matching
- URL: http://arxiv.org/abs/2412.17228v1
- Date: Mon, 23 Dec 2024 02:44:35 GMT
- Title: MatchMiner-AI: An Open-Source Solution for Cancer Clinical Trial Matching
- Authors: Ethan Cerami, Pavel Trukhanov, Morgan A. Paul, Michael J. Hassett, Irbaz B. Riaz, James Lindsay, Emily Mallaber, Harry Klein, Gufran Gungor, Matthew Galvin, Stephen C. Van Nostrand, Joyce Yu, Tali Mazor, Kenneth L. Kehl,
- Abstract summary: We describe the development and evaluation of the MatchMiner-AI pipeline for clinical trial searching and ranking.
MatchMiner-AI focuses on matching patients to potential trials based on core criteria describing clinical "spaces"
The pipeline includes modules for extraction of key information from a patient's longitudinal electronic health record.
- Score: 0.6673517579986238
- License:
- Abstract: Clinical trials drive improvements in cancer treatments and outcomes. However, most adults with cancer do not participate in trials, and trials often fail to enroll enough patients to answer their scientific questions. Artificial intelligence could accelerate matching of patients to appropriate clinical trials. Here, we describe the development and evaluation of the MatchMiner-AI pipeline for clinical trial searching and ranking. MatchMiner-AI focuses on matching patients to potential trials based on core criteria describing clinical "spaces," or disease contexts, targeted by a trial. It aims to accelerate the human work of identifying potential matches, not to fully automate trial screening. The pipeline includes modules for extraction of key information from a patient's longitudinal electronic health record; rapid ranking of candidate trial-patient matches based on embeddings in vector space; and classification of whether a candidate match represents a reasonable clinical consideration. Code and synthetic data are available at https://huggingface.co/ksg-dfci/MatchMiner-AI . Model weights based on synthetic data are available at https://huggingface.co/ksg-dfci/TrialSpace and https://huggingface.co/ksg-dfci/TrialChecker . A simple cancer clinical trial search engine to demonstrate pipeline components is available at https://huggingface.co/spaces/ksg-dfci/trial_search_alpha .
Related papers
- End-To-End Clinical Trial Matching with Large Language Models [0.6151041580858937]
We present an end-to-end pipeline for clinical trial matching using Large Language Models (LLMs)
Our approach identifies relevant candidate trials in 93.3% of cases and achieves a preliminary accuracy of 88.0%.
Our fully end-to-end pipeline can operate autonomously or with human supervision and is not restricted to oncology.
arXiv Detail & Related papers (2024-07-18T12:36:26Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - PRISM: Patient Records Interpretation for Semantic Clinical Trial Matching using Large Language Models [4.438101430231511]
We present the first, end-to-end large-scale empirical evaluation of clinical trial matching using real-world EHRs.
Our study showcases the capability of LLMs to accurately match patients with appropriate clinical trials.
arXiv Detail & Related papers (2024-04-23T22:33:19Z) - Scaling Clinical Trial Matching Using Large Language Models: A Case
Study in Oncology [17.214664001970526]
We conduct a systematic study on scaling clinical trial matching using large language models (LLMs)
Our study is grounded in a clinical trial matching system currently in test deployment at a large U.S. health network.
arXiv Detail & Related papers (2023-08-04T07:51:15Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - AutoTrial: Prompting Language Models for Clinical Trial Design [53.630479619856516]
We present a method named AutoTrial to aid the design of clinical eligibility criteria using language models.
Experiments on over 70K clinical trials verify that AutoTrial generates high-quality criteria texts.
arXiv Detail & Related papers (2023-05-19T01:04:16Z) - COMPOSE: Cross-Modal Pseudo-Siamese Network for Patient Trial Matching [70.08786840301435]
We propose CrOss-Modal PseudO-SiamEse network (COMPOSE) to address these challenges for patient-trial matching.
Experiment results show COMPOSE can reach 98.0% AUC on patient-criteria matching and 83.7% accuracy on patient-trial matching.
arXiv Detail & Related papers (2020-06-15T21:01:33Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - DeepEnroll: Patient-Trial Matching with Deep Embedding and Entailment
Prediction [67.91606509226132]
Clinical trials are essential for drug development but often suffer from expensive, inaccurate and insufficient patient recruitment.
DeepEnroll is a cross-modal inference learning model to jointly encode enrollment criteria (tabular data) into a shared latent space for matching inference.
arXiv Detail & Related papers (2020-01-22T17:51:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.