Neural-MCRL: Neural Multimodal Contrastive Representation Learning for EEG-based Visual Decoding
- URL: http://arxiv.org/abs/2412.17337v1
- Date: Mon, 23 Dec 2024 07:02:44 GMT
- Title: Neural-MCRL: Neural Multimodal Contrastive Representation Learning for EEG-based Visual Decoding
- Authors: Yueyang Li, Zijian Kang, Shengyu Gong, Wenhao Dong, Weiming Zeng, Hongjie Yan, Wai Ting Siok, Nizhuan Wang,
- Abstract summary: Decoding neural visual representations from electroencephalogram (EEG)-based brain activity is crucial for advancing brain-machine interfaces (BMI)
Existing methods often overlook semantic consistency and completeness within modalities and lack effective semantic alignment across modalities.
We propose Neural-MCRL, a novel framework that achieves multimodal alignment through semantic bridging and cross-attention mechanisms.
- Score: 2.587640069216139
- License:
- Abstract: Decoding neural visual representations from electroencephalogram (EEG)-based brain activity is crucial for advancing brain-machine interfaces (BMI) and has transformative potential for neural sensory rehabilitation. While multimodal contrastive representation learning (MCRL) has shown promise in neural decoding, existing methods often overlook semantic consistency and completeness within modalities and lack effective semantic alignment across modalities. This limits their ability to capture the complex representations of visual neural responses. We propose Neural-MCRL, a novel framework that achieves multimodal alignment through semantic bridging and cross-attention mechanisms, while ensuring completeness within modalities and consistency across modalities. Our framework also features the Neural Encoder with Spectral-Temporal Adaptation (NESTA), a EEG encoder that adaptively captures spectral patterns and learns subject-specific transformations. Experimental results demonstrate significant improvements in visual decoding accuracy and model generalization compared to state-of-the-art methods, advancing the field of EEG-based neural visual representation decoding in BMI. Codes will be available at: https://github.com/NZWANG/Neural-MCRL.
Related papers
- Towards Neural Foundation Models for Vision: Aligning EEG, MEG, and fMRI Representations for Decoding, Encoding, and Modality Conversion [0.11249583407496218]
This paper presents a novel approach towards creating a foundational model for aligning neural data and visual stimuli across multimodal representationsof brain activity by leveraging contrastive learning.
We used electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) data.
Our framework's capabilities are demonstrated through three key experiments: decoding visual information from neural data, encoding images into neural representations, and converting between neural modalities.
arXiv Detail & Related papers (2024-11-14T12:27:27Z) - Visual Neural Decoding via Improved Visual-EEG Semantic Consistency [3.4061238650474657]
Methods that directly map EEG features to the CLIP embedding space may introduce mapping bias and cause semantic inconsistency.
We propose a Visual-EEG Semantic Decouple Framework that explicitly extracts the semantic-related features of these two modalities to facilitate optimal alignment.
Our method achieves state-of-the-art results in zero-shot neural decoding tasks.
arXiv Detail & Related papers (2024-08-13T10:16:10Z) - Teaching CORnet Human fMRI Representations for Enhanced Model-Brain Alignment [2.035627332992055]
Functional magnetic resonance imaging (fMRI) as a widely used technique in cognitive neuroscience can record neural activation in the human visual cortex during the process of visual perception.
This study proposed ReAlnet-fMRI, a model based on the SOTA vision model CORnet but optimized using human fMRI data through a multi-layer encoding-based alignment framework.
The fMRI-optimized ReAlnet-fMRI exhibited higher similarity to the human brain than both CORnet and the control model in within-and across-subject as well as within- and across-modality model-brain (fMRI and EEG
arXiv Detail & Related papers (2024-07-15T03:31:42Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - Neuro-Vision to Language: Enhancing Brain Recording-based Visual Reconstruction and Language Interaction [8.63068449082585]
Decoding non-invasive brain recordings is pivotal for advancing our understanding of human cognition.
Our framework integrates 3D brain structures with visual semantics using a Vision Transformer 3D.
We have enhanced the fMRI dataset with diverse fMRI-image-related textual data to support multimodal large model development.
arXiv Detail & Related papers (2024-04-30T10:41:23Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Unidirectional brain-computer interface: Artificial neural network
encoding natural images to fMRI response in the visual cortex [12.1427193917406]
We propose an artificial neural network dubbed VISION to mimic the human brain and show how it can foster neuroscientific inquiries.
VISION successfully predicts human hemodynamic responses as fMRI voxel values to visual inputs with an accuracy exceeding state-of-the-art performance by 45%.
arXiv Detail & Related papers (2023-09-26T15:38:26Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
We introduce a unified framework that addresses both fMRI decoding and encoding.
Our model concurrently recovers visual stimuli from fMRI signals and predicts brain activity from images within a unified framework.
arXiv Detail & Related papers (2023-03-26T14:14:58Z) - BrainCLIP: Bridging Brain and Visual-Linguistic Representation Via CLIP
for Generic Natural Visual Stimulus Decoding [51.911473457195555]
BrainCLIP is a task-agnostic fMRI-based brain decoding model.
It bridges the modality gap between brain activity, image, and text.
BrainCLIP can reconstruct visual stimuli with high semantic fidelity.
arXiv Detail & Related papers (2023-02-25T03:28:54Z) - Convolutional Neural Generative Coding: Scaling Predictive Coding to
Natural Images [79.07468367923619]
We develop convolutional neural generative coding (Conv-NGC)
We implement a flexible neurobiologically-motivated algorithm that progressively refines latent state maps.
We study the effectiveness of our brain-inspired neural system on the tasks of reconstruction and image denoising.
arXiv Detail & Related papers (2022-11-22T06:42:41Z) - Diffusion-Weighted Magnetic Resonance Brain Images Generation with
Generative Adversarial Networks and Variational Autoencoders: A Comparison
Study [55.78588835407174]
We show that high quality, diverse and realistic-looking diffusion-weighted magnetic resonance images can be synthesized using deep generative models.
We present two networks, the Introspective Variational Autoencoder and the Style-Based GAN, that qualify for data augmentation in the medical field.
arXiv Detail & Related papers (2020-06-24T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.