Guided Real Image Dehazing using YCbCr Color Space
- URL: http://arxiv.org/abs/2412.17496v2
- Date: Tue, 24 Dec 2024 14:18:19 GMT
- Title: Guided Real Image Dehazing using YCbCr Color Space
- Authors: Wenxuan Fang, Junkai Fan, Yu Zheng, Jiangwei Weng, Ying Tai, Jun Li,
- Abstract summary: We propose a novel Structure Guided Dehazing Network (SGDN) that leverages the superior structural properties of YCbCr features over RGB.
For effective supervised learning, we introduce a Real-World Well-Aligned Haze dataset.
Experimental results demonstrate that our method surpasses existing state-of-the-art methods across multiple real-world smoke/haze datasets.
- Score: 25.771316524011382
- License:
- Abstract: Image dehazing, particularly with learning-based methods, has gained significant attention due to its importance in real-world applications. However, relying solely on the RGB color space often fall short, frequently leaving residual haze. This arises from two main issues: the difficulty in obtaining clear textural features from hazy RGB images and the complexity of acquiring real haze/clean image pairs outside controlled environments like smoke-filled scenes. To address these issues, we first propose a novel Structure Guided Dehazing Network (SGDN) that leverages the superior structural properties of YCbCr features over RGB. It comprises two key modules: Bi-Color Guidance Bridge (BGB) and Color Enhancement Module (CEM). BGB integrates a phase integration module and an interactive attention module, utilizing the rich texture features of the YCbCr space to guide the RGB space, thereby recovering clearer features in both frequency and spatial domains. To maintain tonal consistency, CEM further enhances the color perception of RGB features by aggregating YCbCr channel information. Furthermore, for effective supervised learning, we introduce a Real-World Well-Aligned Haze (RW$^2$AH) dataset, which includes a diverse range of scenes from various geographical regions and climate conditions. Experimental results demonstrate that our method surpasses existing state-of-the-art methods across multiple real-world smoke/haze datasets. Code and Dataset: \textcolor{blue}{\url{https://github.com/fiwy0527/AAAI25_SGDN.}}
Related papers
- Rethinking RGB Color Representation for Image Restoration Models [55.81013540537963]
We augment the representation to hold structural information of local neighborhoods at each pixel.
Substituting the underlying representation space for the per-pixel losses facilitates the training of image restoration models.
Our space consistently improves overall metrics by reconstructing both color and local structures.
arXiv Detail & Related papers (2024-02-05T06:38:39Z) - The Devil is in the Details: Boosting Guided Depth Super-Resolution via
Rethinking Cross-Modal Alignment and Aggregation [41.12790340577986]
Guided depth super-resolution (GDSR) involves restoring missing depth details using the high-resolution RGB image of the same scene.
Previous approaches have struggled with the heterogeneity and complementarity of the multi-modal inputs, and neglected the issues of modal misalignment, geometrical misalignment, and feature selection.
arXiv Detail & Related papers (2024-01-16T05:37:08Z) - Residual Spatial Fusion Network for RGB-Thermal Semantic Segmentation [19.41334573257174]
Traditional methods mostly use RGB images which are heavily affected by lighting conditions, eg, darkness.
Recent studies show thermal images are robust to the night scenario as a compensating modality for segmentation.
This work proposes a Residual Spatial Fusion Network (RSFNet) for RGB-T semantic segmentation.
arXiv Detail & Related papers (2023-06-17T14:28:08Z) - Spherical Space Feature Decomposition for Guided Depth Map
Super-Resolution [123.04455334124188]
Guided depth map super-resolution (GDSR) aims to upsample low-resolution (LR) depth maps with additional information involved in high-resolution (HR) RGB images from the same scene.
In this paper, we propose the Spherical Space feature Decomposition Network (SSDNet) to solve the above issues.
Our method can achieve state-of-the-art results on four test datasets, as well as successfully generalize to real-world scenes.
arXiv Detail & Related papers (2023-03-15T21:22:21Z) - Hyperspectral Image Super Resolution with Real Unaligned RGB Guidance [11.711656319221072]
We propose an HSI fusion network with heterogenous feature extractions, multi-stage feature alignments, and attentive feature fusion.
Our method obtains a clear improvement over existing single-image and fusion-based super-resolution methods on quantitative assessment as well as visual comparison.
arXiv Detail & Related papers (2023-02-13T11:56:45Z) - Mirror Complementary Transformer Network for RGB-thermal Salient Object
Detection [16.64781797503128]
RGB-thermal object detection (RGB-T SOD) aims to locate the common prominent objects of an aligned visible and thermal infrared image pair.
In this paper, we propose a novel mirror complementary Transformer network (MCNet) for RGB-T SOD.
Experiments on benchmark and VT723 datasets show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2022-07-07T20:26:09Z) - Semantic-embedded Unsupervised Spectral Reconstruction from Single RGB
Images in the Wild [48.44194221801609]
We propose a new lightweight and end-to-end learning-based framework to tackle this challenge.
We progressively spread the differences between input RGB images and re-projected RGB images from recovered HS images via effective camera spectral response function estimation.
Our method significantly outperforms state-of-the-art unsupervised methods and even exceeds the latest supervised method under some settings.
arXiv Detail & Related papers (2021-08-15T05:19:44Z) - Cross-modality Discrepant Interaction Network for RGB-D Salient Object
Detection [78.47767202232298]
We propose a novel Cross-modality Discrepant Interaction Network (CDINet) for RGB-D SOD.
Two components are designed to implement the effective cross-modality interaction.
Our network outperforms $15$ state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-08-04T11:24:42Z) - Data-Level Recombination and Lightweight Fusion Scheme for RGB-D Salient
Object Detection [73.31632581915201]
We propose a novel data-level recombination strategy to fuse RGB with D (depth) before deep feature extraction.
A newly lightweight designed triple-stream network is applied over these novel formulated data to achieve an optimal channel-wise complementary fusion status between the RGB and D.
arXiv Detail & Related papers (2020-08-07T10:13:05Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
Depth information has proven to be a useful cue in the semantic segmentation of RGBD images for providing a geometric counterpart to the RGB representation.
Most existing works simply assume that depth measurements are accurate and well-aligned with the RGB pixels and models the problem as a cross-modal feature fusion.
In this paper, we propose a unified and efficient Crossmodality Guided to not only effectively recalibrate RGB feature responses, but also to distill accurate depth information via multiple stages and aggregate the two recalibrated representations alternatively.
arXiv Detail & Related papers (2020-07-17T18:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.