PC Agent: While You Sleep, AI Works -- A Cognitive Journey into Digital World
- URL: http://arxiv.org/abs/2412.17589v1
- Date: Mon, 23 Dec 2024 14:02:12 GMT
- Title: PC Agent: While You Sleep, AI Works -- A Cognitive Journey into Digital World
- Authors: Yanheng He, Jiahe Jin, Shijie Xia, Jiadi Su, Runze Fan, Haoyang Zou, Xiangkun Hu, Pengfei Liu,
- Abstract summary: PC Agent is an AI system that demonstrates a crucial step toward this vision through human cognition transfer.
To validate this hypothesis, we introduce three key innovations.
Preliminary experiments in PowerPoint presentation creation reveal that complex digital work capabilities can be achieved with a small amount of high-quality cognitive data.
- Score: 19.03469895271871
- License:
- Abstract: Imagine a world where AI can handle your work while you sleep - organizing your research materials, drafting a report, or creating a presentation you need for tomorrow. However, while current digital agents can perform simple tasks, they are far from capable of handling the complex real-world work that humans routinely perform. We present PC Agent, an AI system that demonstrates a crucial step toward this vision through human cognition transfer. Our key insight is that the path from executing simple "tasks" to handling complex "work" lies in efficiently capturing and learning from human cognitive processes during computer use. To validate this hypothesis, we introduce three key innovations: (1) PC Tracker, a lightweight infrastructure that efficiently collects high-quality human-computer interaction trajectories with complete cognitive context; (2) a two-stage cognition completion pipeline that transforms raw interaction data into rich cognitive trajectories by completing action semantics and thought processes; and (3) a multi-agent system combining a planning agent for decision-making with a grounding agent for robust visual grounding. Our preliminary experiments in PowerPoint presentation creation reveal that complex digital work capabilities can be achieved with a small amount of high-quality cognitive data - PC Agent, trained on just 133 cognitive trajectories, can handle sophisticated work scenarios involving up to 50 steps across multiple applications. This demonstrates the data efficiency of our approach, highlighting that the key to training capable digital agents lies in collecting human cognitive data. By open-sourcing our complete framework, including the data collection infrastructure and cognition completion methods, we aim to lower the barriers for the research community to develop truly capable digital agents.
Related papers
- Building a Cognitive Twin Using a Distributed Cognitive System and an Evolution Strategy [0.5586073503694489]
We show that it's possible to orchestrate many simple physical and virtual devices to achieve good approximations of a person's interaction behavior.
The generated Cognitive Twin may later be used to automate tasks, generate more realistic human-like artificial agents or further investigate its behaviors.
arXiv Detail & Related papers (2025-02-03T21:19:13Z) - Memento No More: Coaching AI Agents to Master Multiple Tasks via Hints Internalization [56.674356045200696]
We propose a novel method to train AI agents to incorporate knowledge and skills for multiple tasks without the need for cumbersome note systems or prior high-quality demonstration data.
Our approach employs an iterative process where the agent collects new experiences, receives corrective feedback from humans in the form of hints, and integrates this feedback into its weights.
We demonstrate the efficacy of our approach by implementing it in a Llama-3-based agent which, after only a few rounds of feedback, outperforms advanced models GPT-4o and DeepSeek-V3 in a taskset.
arXiv Detail & Related papers (2025-02-03T17:45:46Z) - TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks [52.46737975742287]
We build a self-contained environment with data that mimics a small software company environment.
We find that with the most competitive agent, 24% of the tasks can be completed autonomously.
This paints a nuanced picture on task automation with LM agents.
arXiv Detail & Related papers (2024-12-18T18:55:40Z) - Human-oriented Representation Learning for Robotic Manipulation [64.59499047836637]
Humans inherently possess generalizable visual representations that empower them to efficiently explore and interact with the environments in manipulation tasks.
We formalize this idea through the lens of human-oriented multi-task fine-tuning on top of pre-trained visual encoders.
Our Task Fusion Decoder consistently improves the representation of three state-of-the-art visual encoders for downstream manipulation policy-learning.
arXiv Detail & Related papers (2023-10-04T17:59:38Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - A data-driven approach for learning to control computers [8.131261634438912]
We investigate the setting of computer control using keyboard and mouse, with goals specified via natural language.
We achieve state-of-the-art and human-level mean performance across all tasks within the MiniWob++ benchmark.
These results demonstrate the usefulness of a unified human-agent interface when training machines to use computers.
arXiv Detail & Related papers (2022-02-16T15:23:46Z) - VECA : A Toolkit for Building Virtual Environments to Train and Test
Human-like Agents [5.366273200529158]
We propose a novel VR-based toolkit, VECA, which enables building fruitful virtual environments to train and test human-like agents.
VECA provides a humanoid agent and an environment manager, enabling the agent to receive rich human-like perception and perform comprehensive interactions.
To motivate VECA, we also provide 24 interactive tasks, which represent (but are not limited to) four essential aspects in early human development.
arXiv Detail & Related papers (2021-05-03T11:42:27Z) - Imitating Interactive Intelligence [24.95842455898523]
We study how to design artificial agents that can interact naturally with humans using the simplification of a virtual environment.
To build agents that can robustly interact with humans, we would ideally train them while they interact with humans.
We use ideas from inverse reinforcement learning to reduce the disparities between human-human and agent-agent interactive behaviour.
arXiv Detail & Related papers (2020-12-10T13:55:47Z) - Watch-And-Help: A Challenge for Social Perception and Human-AI
Collaboration [116.28433607265573]
We introduce Watch-And-Help (WAH), a challenge for testing social intelligence in AI agents.
In WAH, an AI agent needs to help a human-like agent perform a complex household task efficiently.
We build VirtualHome-Social, a multi-agent household environment, and provide a benchmark including both planning and learning based baselines.
arXiv Detail & Related papers (2020-10-19T21:48:31Z) - Learning to Complement Humans [67.38348247794949]
A rising vision for AI in the open world centers on the development of systems that can complement humans for perceptual, diagnostic, and reasoning tasks.
We demonstrate how an end-to-end learning strategy can be harnessed to optimize the combined performance of human-machine teams.
arXiv Detail & Related papers (2020-05-01T20:00:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.