Investigating Length Issues in Document-level Machine Translation
- URL: http://arxiv.org/abs/2412.17592v1
- Date: Mon, 23 Dec 2024 14:08:45 GMT
- Title: Investigating Length Issues in Document-level Machine Translation
- Authors: Ziqian Peng, Rachel Bawden, François Yvon,
- Abstract summary: We design and implement a new approach designed to precisely measure the effect of length increments on machine translation outputs.
Experiments show that (a)translation performance decreases with the length of the input text; (b)the position of sentences within the document matters and translation quality is higher for sentences occurring earlier in a document.
Our results suggest that even though document-level MT is computationally feasible, it does not yet match the performance of sentence-based MT.
- Score: 19.397788794005862
- License:
- Abstract: Transformer architectures are increasingly effective at processing and generating very long chunks of texts, opening new perspectives for document-level machine translation (MT). In this work, we challenge the ability of MT systems to handle texts comprising up to several thousands of tokens. We design and implement a new approach designed to precisely measure the effect of length increments on MT outputs. Our experiments with two representative architectures unambiguously show that (a)~translation performance decreases with the length of the input text; (b)~the position of sentences within the document matters and translation quality is higher for sentences occurring earlier in a document. We further show that manipulating the distribution of document lengths and of positional embeddings only marginally mitigates such problems. Our results suggest that even though document-level MT is computationally feasible, it does not yet match the performance of sentence-based MT.
Related papers
- M3T: A New Benchmark Dataset for Multi-Modal Document-Level Machine Translation [32.39711525205274]
Document translation poses a challenge for Neural Machine Translation (NMT) systems.
Most document-level NMT systems rely on meticulously curated sentence-level parallel data.
Real-world documents often possess intricate text layouts that defy these assumptions.
This paper introduces M3T, a novel benchmark dataset tailored to evaluate NMT systems on the comprehensive task of translating semi-structured documents.
arXiv Detail & Related papers (2024-06-12T14:28:25Z) - Contextual Refinement of Translations: Large Language Models for Sentence and Document-Level Post-Editing [12.843274390224853]
Large Language Models (LLM's) have demonstrated considerable success in various Natural Language Processing tasks.
We show that they have yet to attain state-of-the-art performance in Neural Machine Translation.
We propose adapting LLM's as Automatic Post-Editors (APE) rather than direct translators.
arXiv Detail & Related papers (2023-10-23T12:22:15Z) - Improving Long Context Document-Level Machine Translation [51.359400776242786]
Document-level context for neural machine translation (NMT) is crucial to improve translation consistency and cohesion.
Many works have been published on the topic of document-level NMT, but most restrict the system to just local context.
We propose a constrained attention variant that focuses the attention on the most relevant parts of the sequence, while simultaneously reducing the memory consumption.
arXiv Detail & Related papers (2023-06-08T13:28:48Z) - Discourse Centric Evaluation of Machine Translation with a Densely
Annotated Parallel Corpus [82.07304301996562]
This paper presents a new dataset with rich discourse annotations, built upon the large-scale parallel corpus BWB introduced in Jiang et al.
We investigate the similarities and differences between the discourse structures of source and target languages.
We discover that MT outputs differ fundamentally from human translations in terms of their latent discourse structures.
arXiv Detail & Related papers (2023-05-18T17:36:41Z) - Error Analysis Prompting Enables Human-Like Translation Evaluation in Large Language Models [57.80514758695275]
Using large language models (LLMs) for assessing the quality of machine translation (MT) achieves state-of-the-art performance at the system level.
We propose a new prompting method called textbftextttError Analysis Prompting (EAPrompt)
This technique emulates the commonly accepted human evaluation framework - Multidimensional Quality Metrics (MQM) and textitproduces explainable and reliable MT evaluations at both the system and segment level.
arXiv Detail & Related papers (2023-03-24T05:05:03Z) - Extrinsic Evaluation of Machine Translation Metrics [78.75776477562087]
It is unclear if automatic metrics are reliable at distinguishing good translations from bad translations at the sentence level.
We evaluate the segment-level performance of the most widely used MT metrics (chrF, COMET, BERTScore, etc.) on three downstream cross-lingual tasks.
Our experiments demonstrate that all metrics exhibit negligible correlation with the extrinsic evaluation of the downstream outcomes.
arXiv Detail & Related papers (2022-12-20T14:39:58Z) - A Bilingual Parallel Corpus with Discourse Annotations [82.07304301996562]
This paper describes BWB, a large parallel corpus first introduced in Jiang et al. (2022), along with an annotated test set.
The BWB corpus consists of Chinese novels translated by experts into English, and the annotated test set is designed to probe the ability of machine translation systems to model various discourse phenomena.
arXiv Detail & Related papers (2022-10-26T12:33:53Z) - Modeling Context With Linear Attention for Scalable Document-Level
Translation [72.41955536834702]
We investigate the efficacy of a recent linear attention model on document translation and augment it with a sentential gate to promote a recency inductive bias.
We show that sentential gating further improves translation quality on IWSLT.
arXiv Detail & Related papers (2022-10-16T03:41:50Z) - Diving Deep into Context-Aware Neural Machine Translation [36.17847243492193]
This paper analyzes the performance of document-level NMT models on four diverse domains.
We find that there is no single best approach to document-level NMT, but rather that different architectures come out on top on different tasks.
arXiv Detail & Related papers (2020-10-19T13:23:12Z) - Long-Short Term Masking Transformer: A Simple but Effective Baseline for
Document-level Neural Machine Translation [28.94748226472447]
We study the pros and cons of the standard transformer in document-level translation.
We propose a surprisingly simple long-short term masking self-attention on top of the standard transformer.
We can achieve a strong result in BLEU and capture discourse phenomena.
arXiv Detail & Related papers (2020-09-19T00:29:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.