Graph Neural Networks Are Evolutionary Algorithms
- URL: http://arxiv.org/abs/2412.17629v2
- Date: Tue, 24 Dec 2024 13:27:44 GMT
- Title: Graph Neural Networks Are Evolutionary Algorithms
- Authors: Kaichen Ouyang, Shengwei Fu,
- Abstract summary: Graph Neural Evolution (GNE) is a novel evolutionary algorithm that models individuals as nodes in a graph.
GNE consistently outperforms state-of-the-art algorithms such as GA, DE, CMA-ES, SDAES, and RL-SHADE.
GNE establishes a conceptual and mathematical foundation linking EAs and GNNs, offering new perspectives for both fields.
- Score: 0.0
- License:
- Abstract: In this paper, we reveal the intrinsic duality between graph neural networks (GNNs) and evolutionary algorithms (EAs), bridging two traditionally distinct fields. Building on this insight, we propose Graph Neural Evolution (GNE), a novel evolutionary algorithm that models individuals as nodes in a graph and leverages designed frequency-domain filters to balance global exploration and local exploitation. Through the use of these filters, GNE aggregates high-frequency (diversity-enhancing) and low-frequency (stability-promoting) information, transforming EAs into interpretable and tunable mechanisms in the frequency domain. Extensive experiments on benchmark functions demonstrate that GNE consistently outperforms state-of-the-art algorithms such as GA, DE, CMA-ES, SDAES, and RL-SHADE, excelling in complex landscapes, optimal solution shifts, and noisy environments. Its robustness, adaptability, and superior convergence highlight its practical and theoretical value. Beyond optimization, GNE establishes a conceptual and mathematical foundation linking EAs and GNNs, offering new perspectives for both fields. Its framework encourages the development of task-adaptive filters and hybrid approaches for EAs, while its insights can inspire advances in GNNs, such as improved global information propagation and mitigation of oversmoothing. GNE's versatility extends to solving challenges in machine learning, including hyperparameter tuning and neural architecture search, as well as real-world applications in engineering and operations research. By uniting the dynamics of EAs with the structural insights of GNNs, this work provides a foundation for interdisciplinary innovation, paving the way for scalable and interpretable solutions to complex optimization problems.
Related papers
- On the Convergence of (Stochastic) Gradient Descent for Kolmogorov--Arnold Networks [56.78271181959529]
Kolmogorov--Arnold Networks (KANs) have gained significant attention in the deep learning community.
Empirical investigations demonstrate that KANs optimized via gradient descent (SGD) are capable of achieving near-zero training loss.
arXiv Detail & Related papers (2024-10-10T15:34:10Z) - Enabling Accelerators for Graph Computing [0.0]
Graph Neural Networks (GNNs) offer a novel paradigm for learning on graph-structured data.
GNNs present new computational challenges compared to conventional neural networks.
This thesis aims to develop a better understanding of how GNNs interact with the underlying hardware.
arXiv Detail & Related papers (2023-12-16T23:31:20Z) - Attentional Graph Neural Networks for Robust Massive Network
Localization [20.416879207269446]
Graph neural networks (GNNs) have emerged as a prominent tool for classification tasks in machine learning.
This paper integrates GNNs with attention mechanism to tackle a challenging nonlinear regression problem: network localization.
We first introduce a novel network localization method based on graph convolutional network (GCN), which exhibits exceptional precision even under severe non-line-of-sight (NLOS) conditions.
arXiv Detail & Related papers (2023-11-28T15:05:13Z) - GNN-based physics solver for time-independent PDEs [1.7616042687330642]
Time-independent problems pose the challenge of requiring long-range exchange of information across the computational domain for obtaining accurate predictions.
We present two graph neural networks (GNNs) to overcome this challenge - the Edge Augmented GNN and the Multi-GNN.
We show that both these networks perform significantly better (by a factor of 1.5 to 2) than baseline methods when applied to time-independent solid mechanics problems.
arXiv Detail & Related papers (2023-03-28T02:04:43Z) - GNN at the Edge: Cost-Efficient Graph Neural Network Processing over
Distributed Edge Servers [24.109721494781592]
Graph Neural Networks (GNNs) are still under exploration, presenting a stark disparity to its broad edge adoptions.
This paper studies the cost optimization for distributed GNN processing over a multi-tier heterogeneous edge network.
We show that our approach achieves superior performance over de facto baselines with more than 95.8% cost eduction in a fast convergence speed.
arXiv Detail & Related papers (2022-10-31T13:03:16Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning.
Existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs.
We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter.
arXiv Detail & Related papers (2022-05-27T10:48:14Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
We propose to reformulate the result diversification problem as a bi-objective search problem, and solve it by a multi-objective evolutionary algorithm (EA)
We theoretically prove that the GSEMO can achieve the optimal-time approximation ratio, $1/2$.
When the objective function changes dynamically, the GSEMO can maintain this approximation ratio in running time, addressing the open question proposed by Borodin et al.
arXiv Detail & Related papers (2021-10-18T14:00:22Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Interpreting and Unifying Graph Neural Networks with An Optimization
Framework [47.44773358082203]
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning.
In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem.
Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, opens up new opportunities for flexibly designing new GNNs.
arXiv Detail & Related papers (2021-01-28T08:06:02Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.