ResearchTown: Simulator of Human Research Community
- URL: http://arxiv.org/abs/2412.17767v1
- Date: Mon, 23 Dec 2024 18:26:53 GMT
- Title: ResearchTown: Simulator of Human Research Community
- Authors: Haofei Yu, Zhaochen Hong, Zirui Cheng, Kunlun Zhu, Keyang Xuan, Jinwei Yao, Tao Feng, Jiaxuan You,
- Abstract summary: ResearchTown is a multi-agent framework for research community simulation.<n>ResearchTown can provide a realistic simulation of collaborative research activities.<n>ResearchTown can maintain robust simulation with multiple researchers and diverse papers.
- Score: 14.033414261636336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable potential in scientific domains, yet a fundamental question remains unanswered: Can we simulate human research communities with LLMs? Addressing this question can deepen our understanding of the processes behind idea brainstorming and inspire the automatic discovery of novel scientific insights. In this work, we propose ResearchTown, a multi-agent framework for research community simulation. Within this framework, the human research community is simplified and modeled as an agent-data graph, where researchers and papers are represented as agent-type and data-type nodes, respectively, and connected based on their collaboration relationships. We also introduce TextGNN, a text-based inference framework that models various research activities (e.g., paper reading, paper writing, and review writing) as special forms of a unified message-passing process on the agent-data graph. To evaluate the quality of the research simulation, we present ResearchBench, a benchmark that uses a node-masking prediction task for scalable and objective assessment based on similarity. Our experiments reveal three key findings: (1) ResearchTown can provide a realistic simulation of collaborative research activities, including paper writing and review writing; (2) ResearchTown can maintain robust simulation with multiple researchers and diverse papers; (3) ResearchTown can generate interdisciplinary research ideas that potentially inspire novel research directions.
Related papers
- A Vision for Auto Research with LLM Agents [47.310516109726656]
This paper introduces Agent-Based Auto Research, a structured multi-agent framework designed to automate, coordinate, and optimize the full lifecycle of scientific research.
The system spans all major research phases, including literature review, ideation, methodology, experimentation, paper writing, peer review response, and dissemination.
arXiv Detail & Related papers (2025-04-26T02:06:10Z) - ResearchBench: Benchmarking LLMs in Scientific Discovery via Inspiration-Based Task Decomposition [67.26124739345332]
Large language models (LLMs) have demonstrated potential in assisting scientific research, yet their ability to discover high-quality research hypotheses remains unexamined.
We introduce the first large-scale benchmark for evaluating LLMs with a near-sufficient set of sub-tasks of scientific discovery.
We develop an automated framework that extracts critical components - research questions, background surveys, inspirations, and hypotheses - from scientific papers.
arXiv Detail & Related papers (2025-03-27T08:09:15Z) - Graph of AI Ideas: Leveraging Knowledge Graphs and LLMs for AI Research Idea Generation [25.04071920426971]
We propose a framework called the Graph of AI Ideas (GoAI) for the AI research field, which is dominated by open-access papers.
This framework organizes relevant literature into entities within a knowledge graph and summarizes the semantic information contained in citations into relations within the graph.
arXiv Detail & Related papers (2025-03-11T15:36:38Z) - Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.
Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - From Individual to Society: A Survey on Social Simulation Driven by Large Language Model-based Agents [47.935533238820334]
Traditional sociological research often relies on human participation, which, though effective, is expensive, challenging to scale, and with ethical concerns.
Recent advancements in large language models (LLMs) highlight their potential to simulate human behavior, enabling the replication of individual responses and facilitating studies on many interdisciplinary studies.
We categorize the simulations into three types: (1) Individual Simulation, which mimics specific individuals or demographic groups; (2) Scenario Simulation, where multiple agents collaborate to achieve goals within specific contexts; and (3) Simulation Society, which models interactions within agent societies to reflect the complexity and variety of real-world dynamics.
arXiv Detail & Related papers (2024-12-04T18:56:37Z) - Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents [64.64280477958283]
An exponential increase in scientific literature makes it challenging for researchers to stay current with recent advances and identify meaningful research directions.
Recent developments in large language models(LLMs) suggest a promising avenue for automating the generation of novel research ideas.
We propose a Chain-of-Ideas(CoI) agent, an LLM-based agent that organizes relevant literature in a chain structure to effectively mirror the progressive development in a research domain.
arXiv Detail & Related papers (2024-10-17T03:26:37Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgent is a large language model-powered research idea writing agent.
It generates problems, methods, and experiment designs while iteratively refining them based on scientific literature.
We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
arXiv Detail & Related papers (2024-04-11T13:36:29Z) - Research Scholar Interest Mining Method based on Load Centrality [15.265191824669555]
This paper proposes a research scholar interest mining algorithm based on load centrality.
The regional structure of each topic can be used to closely calculate the weight of the centrality research model of the node.
The scientific research cooperation based on the load rate center proposed in this paper can effectively extract the interests of scientific research scholars.
arXiv Detail & Related papers (2022-03-21T04:16:46Z) - GASP! Generating Abstracts of Scientific Papers from Abstracts of Cited
Papers [9.472227971923672]
This paper introduces the novel, scientifically and philosophically challenging task of Generating Abstracts of Scientific Papers from abstracts of cited papers (GASP) as a text-to-text task.
arXiv Detail & Related papers (2020-02-28T14:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.