Large Motion Video Autoencoding with Cross-modal Video VAE
- URL: http://arxiv.org/abs/2412.17805v1
- Date: Mon, 23 Dec 2024 18:58:24 GMT
- Title: Large Motion Video Autoencoding with Cross-modal Video VAE
- Authors: Yazhou Xing, Yang Fei, Yingqing He, Jingye Chen, Jiaxin Xie, Xiaowei Chi, Qifeng Chen,
- Abstract summary: Video Variational Autoencoder (VAE) is essential for reducing video redundancy and facilitating efficient video generation.
Existing Video VAEs have begun to address temporal compression; however, they often suffer from inadequate reconstruction performance.
We present a novel and powerful video autoencoder capable of high-fidelity video encoding.
- Score: 52.13379965800485
- License:
- Abstract: Learning a robust video Variational Autoencoder (VAE) is essential for reducing video redundancy and facilitating efficient video generation. Directly applying image VAEs to individual frames in isolation can result in temporal inconsistencies and suboptimal compression rates due to a lack of temporal compression. Existing Video VAEs have begun to address temporal compression; however, they often suffer from inadequate reconstruction performance. In this paper, we present a novel and powerful video autoencoder capable of high-fidelity video encoding. First, we observe that entangling spatial and temporal compression by merely extending the image VAE to a 3D VAE can introduce motion blur and detail distortion artifacts. Thus, we propose temporal-aware spatial compression to better encode and decode the spatial information. Additionally, we integrate a lightweight motion compression model for further temporal compression. Second, we propose to leverage the textual information inherent in text-to-video datasets and incorporate text guidance into our model. This significantly enhances reconstruction quality, particularly in terms of detail preservation and temporal stability. Third, we further improve the versatility of our model through joint training on both images and videos, which not only enhances reconstruction quality but also enables the model to perform both image and video autoencoding. Extensive evaluations against strong recent baselines demonstrate the superior performance of our method. The project website can be found at~\href{https://yzxing87.github.io/vae/}{https://yzxing87.github.io/vae/}.
Related papers
- Improved Video VAE for Latent Video Diffusion Model [55.818110540710215]
Video Autoencoder (VAE) aims to compress pixel data into low-dimensional latent space, playing an important role in OpenAI's Sora.
Most of existing VAEs inflate a pretrained image VAE into the 3D causal structure for temporal-spatial compression.
We propose a new KTC architecture and a group causal convolution (GCConv) module to further improve video VAE (IV-VAE)
arXiv Detail & Related papers (2024-11-10T12:43:38Z) - Perceptual Quality Improvement in Videoconferencing using
Keyframes-based GAN [28.773037051085318]
We propose a novel GAN-based method for compression artifacts reduction in videoconferencing.
First, we extract multi-scale features from the compressed and reference frames.
Then, our architecture combines these features in a progressive manner according to facial landmarks.
arXiv Detail & Related papers (2023-11-07T16:38:23Z) - Predictive Coding For Animation-Based Video Compression [13.161311799049978]
We propose a predictive coding scheme which uses image animation as a predictor, and codes the residual with respect to the actual target frame.
Our experiments indicate a significant gain, in excess of 70% compared to the HEVC video standard and over 30% compared to VVC.
arXiv Detail & Related papers (2023-07-09T14:40:54Z) - Exploring Long- and Short-Range Temporal Information for Learned Video
Compression [54.91301930491466]
We focus on exploiting the unique characteristics of video content and exploring temporal information to enhance compression performance.
For long-range temporal information exploitation, we propose temporal prior that can update continuously within the group of pictures (GOP) during inference.
In that case temporal prior contains valuable temporal information of all decoded images within the current GOP.
In detail, we design a hierarchical structure to achieve multi-scale compensation.
arXiv Detail & Related papers (2022-08-07T15:57:18Z) - Leveraging Bitstream Metadata for Fast, Accurate, Generalized Compressed
Video Quality Enhancement [74.1052624663082]
We develop a deep learning architecture capable of restoring detail to compressed videos.
We show that this improves restoration accuracy compared to prior compression correction methods.
We condition our model on quantization data which is readily available in the bitstream.
arXiv Detail & Related papers (2022-01-31T18:56:04Z) - Conditional Entropy Coding for Efficient Video Compression [82.35389813794372]
We propose a very simple and efficient video compression framework that only focuses on modeling the conditional entropy between frames.
We first show that a simple architecture modeling the entropy between the image latent codes is as competitive as other neural video compression works and video codecs.
We then propose a novel internal learning extension on top of this architecture that brings an additional 10% savings without trading off decoding speed.
arXiv Detail & Related papers (2020-08-20T20:01:59Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
We propose a content adaptive and error propagation aware video compression system.
Our method employs a joint training strategy by considering the compression performance of multiple consecutive frames instead of a single frame.
Instead of using the hand-crafted coding modes in the traditional compression systems, we design an online encoder updating scheme in our system.
arXiv Detail & Related papers (2020-03-25T09:04:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.